Publications by authors named "Lila Peltekian"

Article Synopsis
  • Excessive production of aldosterone is linked to serious health risks, including heart disease, stroke, dementia, and increased mortality, primarily by promoting sodium retention and consumption.
  • Researchers identified specific neurons in the human brain that are sensitive to aldosterone and express a genetic regulator called HSD2, which play a crucial role in salt intake.
  • Experimental studies in mice confirmed that these HSD2 neurons are essential for aldosterone-induced salt consumption, suggesting they could be a potential target for treatments aimed at controlling dietary sodium intake.
View Article and Find Full Text PDF

In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst.

View Article and Find Full Text PDF

Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region.

View Article and Find Full Text PDF

The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear.

View Article and Find Full Text PDF

Previously, we identified a population of neurons in the hindbrain tegmentum, bordering the locus coeruleus (LC). We named this population the pre-locus coeruleus (pre-LC) because in rats its neurons lie immediately rostral to the LC. In mice, however, pre-LC and LC neurons intermingle, making them difficult to distinguish.

View Article and Find Full Text PDF

The parabrachial nucleus (PB) is a complex structure located at the junction of the midbrain and hindbrain. Its neurons have diverse genetic profiles and influence a variety of homeostatic functions. While its cytoarchitecture and overall efferent projections are known, we lack comprehensive information on the projection patterns of specific neuronal subtypes in the PB.

View Article and Find Full Text PDF

The parabrachial nucleus (PB) in the upper brain stem tegmentum includes several neuronal subpopulations with a wide variety of connections and functions. A subpopulation of PB neurons projects axons directly to the cerebral cortex, and limbic areas of the cerebral cortex send a return projection directly to the PB. We used retrograde and Cre-dependent anterograde tracing to identify genetic markers and characterize this PB-cortical interconnectivity in mice.

View Article and Find Full Text PDF

Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice.

View Article and Find Full Text PDF

Objective: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates metabolic homeostasis. Previous work has suggested that impairment of FGF21 signaling in adipose tissue may occur through downregulation of the obligate FGF21 co-receptor, β-klotho, which leads to "FGF21 resistance" during the onset of diet-induced obesity. Here, we sought to determine whether maintenance of β-klotho expression in adipose tissue prevents FGF21 resistance and whether other mechanisms also contribute to FGF21 resistance in vivo.

View Article and Find Full Text PDF

The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session58f23r1abd8sjetf1j4s7olvb0vfnfll): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once