Publications by authors named "Lila Khennouf"

Active nerve cells release vasodilators that increase their energy supply by dilating local blood vessels, a mechanism termed neurovascular coupling and the basis of BOLD functional neuroimaging signals. Here, we reveal a mechanism for cerebral blood flow control, a precapillary sphincter at the transition between the penetrating arteriole and first order capillary, linking blood flow in capillaries to the arteriolar inflow. The sphincters are encircled by contractile mural cells, which are capable of bidirectional control of the length and width of the enclosed vessel segment.

View Article and Find Full Text PDF

Cerebral blood flow is reduced early in the onset of Alzheimer's disease (AD). Because most of the vascular resistance within the brain is in capillaries, this could reflect dysfunction of contractile pericytes on capillary walls. We used live and rapidly fixed biopsied human tissue to establish disease relevance, and rodent experiments to define mechanism.

View Article and Find Full Text PDF

Spreading depolarization is assumed to be the mechanism of migraine with aura, which is accompanied by an initial predominant hyperaemic response followed by persistent vasoconstriction. Cerebral blood flow responses are impaired in patients and in experimental animals after spreading depolarization. Understanding the regulation of cortical blood vessels during and after spreading depolarization could help patients with migraine attacks, but our knowledge of these vascular mechanisms is still incomplete.

View Article and Find Full Text PDF

Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO, arterial O, and brain activity and is largely constant in the awake state. Although small changes in arterial CO are particularly potent to change CBF (1 mmHg variation in arterial CO changes CBF by 3%-4%), the coupling mechanism is incompletely understood. We tested the hypothesis that astrocytic prostaglandin E (PgE) plays a key role for cerebrovascular CO reactivity, and that preserved synthesis of glutathione is essential for the full development of this response.

View Article and Find Full Text PDF

Objective: Familial hemiplegic migraine type 1 (FHM1) is a subtype of migraine with aura caused by a gain-of-function mutation in the pore-forming α1 subunit of CaV 2.1 (P/Q-type) calcium channels. However, the mechanisms underlying how the disease is brought about and the prolonged aura remain incompletely understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq59ah3gsjprq95u1u2h400vdh0vlt1jk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once