Publications by authors named "Lila E Mullany"

Identification of causal microRNAs (miRNAs) in colorectal cancer (CRC) is elusive, due to our lack of understanding of how specific miRNAs affect biological pathways and outcomes. An miRNA can regulate many mRNAs and an mRNA can be associated with many miRNAs; appreciation of these complex networks in which miRNAs operate is necessary to transition from identifying dysregulated miRNAs to identifying individual miRNAs or groups of miRNAs that are suitable for therapeutic purposes. The aim of the paper is to compile results from a population-based study ( = 1,954 cases with matched carcinoma/normal tissue) of miRNAs in CRC.

View Article and Find Full Text PDF

JAK-STAT signaling influences many downstream processes that, unchecked, contribute to carcinogenesis and metastasis. MicroRNAs (miRNAs) are hypothesized as a mechanism to prevent uncontrolled growth from continuous JAK-STAT activation. We investigated differential expression between paired carcinoma and normal colorectal mucosa of messenger RNAs (mRNAs) and miRNAs using RNA-Seq and Agilent Human miRNA Microarray V19.

View Article and Find Full Text PDF

Background: The TGFβ-signaling pathway plays an important role in the pathogenesis of colorectal cancer (CRC). Loss of function of several genes within this pathway, such as bone morphogenetic proteins (BMPs) have been seen as key events in CRC progression.

Methods: In this study we comprehensively evaluate differential gene expression (RNASeq) of 81 genes in the TGFβ-signaling pathway and evaluate how dysregulated genes are associated with miRNA expression (Agilent Human miRNA Microarray V19.

View Article and Find Full Text PDF

Introduction: We examined expression of genes in the p53-signaling pathway. We determine if genes that have significantly different expression in carcinoma tissue compared to normal mucosa also have significantly differentially expressed miRNAs. We utilize a sample of 217 CRC cases.

View Article and Find Full Text PDF

Uncontrolled cell replication is a key component of carcinogenesis. MicroRNAs (miRNAs) regulate genes involved in checkpoints, DNA repair, and genes encoding for key proteins regulating the cell cycle. We investigated how miRNAs and mRNAs in colorectal cancer subjects interact to regulate the cell cycle.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation and apoptosis. We examined associations of differential gene and microRNA (miRNA) expression between carcinoma and paired normal mucosa for 241 genes in the KEGG-identified MAPK-signaling pathway among 217 colorectal cancer (CRC) cases. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.

View Article and Find Full Text PDF

Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N = 217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.

View Article and Find Full Text PDF

The Wnt-signaling pathway functions in regulating cell growth and thus is involved in the carcinogenic process of several cancers, including colorectal cancer. We tested the hypothesis that multiple genes in this signaling pathway are dysregulated and that miRNAs are associated with these dysregulated genes. We used data from 217 colorectal cancer (CRC) cases to evaluate differences in Wnt-signaling pathway gene expression between paired CRC and normal mucosa and identify miRNAs that are associated with these genes.

View Article and Find Full Text PDF

Transcription factors (TFs) and microRNAs (miRNAs) regulate gene expression: TFs by influencing messenger RNA (mRNA) transcription and miRNAs by influencing mRNA translation and transcript degradation. Additionally, miRNAs and TFs alter each other's expression, making it difficult to ascertain the effect either one has on target gene (TG) expression. In this investigation, we use a two-way interaction model with the TF and miRNA as independent variables to investigate whether miRNAs and TFs work together to influence TG expression levels in colon cancer subjects.

View Article and Find Full Text PDF

Background: The nuclear factor-kappa B (NF-κB) signalling pathway is a regulator of immune response and inflammation that has been implicated in the carcinogenic process. We examined differentially expressed genes in this pathway and miRNAs to determine associations with colorectal cancer (CRC).

Methods: We used data from 217 CRC cases to evaluate differences in NF-κB signalling pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes.

View Article and Find Full Text PDF

Half of miRNAs expressed in colorectal tissue are expressed < 50% of the population. Many infrequently expressed miRNAs have low levels of expression. We hypothesize that less frequently expressed miRNAs, when expressed at higher levels, influence both disease stage and survival after diagnosis with colorectal cancer (CRC); low levels of expression may be background noise.

View Article and Find Full Text PDF

The PI3K/AKT-signaling pathway is one of the most frequently activated signal-transduction pathways in cancer. We examined how dysregulated gene expression is associated with miRNA expression in this pathway in colorectal cancer (CRC). We used data from 217 CRC cases to evaluate differential pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes.

View Article and Find Full Text PDF

Background: Determination of functional pathways regulated by microRNAs (miRNAs), while an essential step in developing therapeutics, is challenging. Some miRNAs have been studied extensively; others have limited information. In this study, we focus on 254 miRNAs previously identified as being associated with colorectal cancer and their database-identified validated target genes.

View Article and Find Full Text PDF

Tumor suppressor genes (TSGs) and oncogenes (OG) are involved in carcinogenesis. MiRNAs also contribute to cellular pathways leading to cancer. We use data from 217 colorectal cancer (CRC) cases to evaluate differences in TSGs and OGs expression between paired CRC and normal mucosa and evaluate how TSGs and OGs are associated with miRNAs.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and Transcription Factors (TFs) both influence messenger RNA (mRNA) expression, disrupting biological pathways involved in carcinogenesis and prognosis. As many miRNAs target multiple mRNAs, thus influencing a multitude of biological pathways, deciphering which miRNAs are important for cancer development and survival is difficult. In this study, we (i) determine associations between TF and survival (N = 168 colon cancer cases); (ii) identify miRNAs associated with TFs related to survival; and (iii) determine if factors derived from TF-specific miRNA principal component analysis (PCA) influence survival.

View Article and Find Full Text PDF

We have previously shown that commonly expressed miRNAs influenced tumor molecular phenotype in colorectal cancer. We hypothesize that infrequently expressed miRNAs, when showing higher levels of expression, help to define tumor molecular phenotype. In this study, we examine 304 miRNAs expressed in at least 30 individuals, but in <50% of the population and with a mean level of expression above 1.

View Article and Find Full Text PDF

Purpose: Alcohol consumption has been purported to influence many diseases. MicroRNAs (miRNAs) may be influenced by compounds found in alcohol. In this investigation, we test the hypothesis that total alcohol, beer, wine, and hard liquor influence miRNA expression.

View Article and Find Full Text PDF

The TGF-β signaling pathway is involved in regulation of cell growth, angiogenesis, and metastasis. We test the hypothesis that genetic variation in the TGF-β signaling pathway alters miRNA expression.We use data from 1188 colorectal cancer cases to evaluate associations between 80 SNPs in 21 genes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-protein-coding RNA molecules that regulate gene expression. Diet and lifestyle factors have been hypothesized to be involved in the regulation of miRNA expression. In this study it was hypothesized that diet and lifestyle factors are associated with miRNA expression.

View Article and Find Full Text PDF

The genomic landscape of adenomas and polyps may help define disease pathways. Expression of miRNAs in adenomas and polyps may importantly contribute to these pathways. We evaluated miRNA expression in 293 polyp-normal colorectal mucosa pairs.

View Article and Find Full Text PDF

We have shown that single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes, miRNA target genes, and miRNA biogenesis genes minimally contribute to colon cancer risk. It is possible that these SNPs alter survival. We analyzed 565 SNPs in or adjacent to microRNAs, target genes, or biogenesis genes, using 1,115 cases and 1,173 controls; 837 cases had survival information.

View Article and Find Full Text PDF

Smoking is known to influence messenger RNA (mRNA) expression in colorectal cancer (CRC) cases. As microRNAs (miRNAs) are known repressors of mRNAs, we hypothesize that smoking may influence miRNA expression, thus altering mRNA expression. Our sample consisted of 1447 CRC cases that had normal colorectal mucosa and carcinoma miRNA data and lifestyle data.

View Article and Find Full Text PDF

It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNA) are small non-coding RNA involved in cellular processes, including cell proliferation and angiogenesis. Thus, miRNA expression may alter survival after diagnosis with colorectal cancer (CRC).

Results: Individuals diagnosed with stage 1 or stage 2 rectal cancer had worse survival than colon cancer cases diagnosed at stage 1 or stage 2.

View Article and Find Full Text PDF