The structure of the binary chalcohalide glasses TeCl (0.35 ≤ x ≤ 0.65) is considered by combining experimental and theoretical results.
View Article and Find Full Text PDFWe demonstrate here that microporous materials can exhibit softening upon adsorption of guest molecules, at low to intermediate pore loading, in parallel to the pore shrinking that is well-known in this regime. This novel and counterintuitive mechanical response was observed through molecular simulations of both model pore systems (such as slit pore) and real metal-organic frameworks. It is contrary to common belief that adsorption of guest molecules necessarily leads to stiffening due to increased density, a fact that we show is the high-loading limit of a more complex behavior: a nonmonotonic softening-then-stiffening.
View Article and Find Full Text PDFSelenium-rich Ge-Te-Se glasses have been synthesized along the GeSe4-GeTe4 pseudo-composition line and acquired by (77)Se Hahn echo magic-angle spinning NMR. The comparison with the GeSe4 spectrum shows a drastic modification of the typical double-resonance lineshape even at low Te concentrations (<10%). In order to rationalize this feature and to understand the effect of Te on the structure of our glasses, first-principles molecular dynamics simulations and gauge including projector augmented wave NMR parameter calculations have been performed.
View Article and Find Full Text PDF