Drought poses significant challenges to agricultural production, ecological stability and global food security. While wild pear trees exhibit strong drought resistance, cultivated varieties show weaker drought tolerance. This study aims to elucidate the molecular mechanisms underlying pear trees' response to drought stress.
View Article and Find Full Text PDFEnvironmental disasters like drought reduce agricultural output and plant growth. Redox management significantly affects plant stress responses. An earlier study found that PbPIP1;4 transports HO and promotes HO downstream cascade signaling to restore redox equilibrium.
View Article and Find Full Text PDFThe vacuolar H-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H-gradient across tonoplast, energizing Na sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method.
View Article and Find Full Text PDFFlavonoids are plant pigments that play a major role in plant defense and have significant health benefits to humans. Chalcone synthase (CHS) is an important enzyme in flavonoid biosynthesis and investigation transcription factors (TFs) regulating its expression and downstream targets is critical to understanding its mechanism. Here, a novel TF, PbWRKY18, was isolated from the pear Pyrus betulaefolia.
View Article and Find Full Text PDFAbiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants.
View Article and Find Full Text PDFPear anthracnose caused by Colletotrichum fructicola is one of the main fungal diseases in all pear-producing areas. The degradation of ubiquitinated proteins by the 26S proteasome is a regulatory mechanism of eukaryotes. E3 ubiquitin ligase is substrate specific and is one of the most diversified and abundant enzymes in the regulation mechanism of plant ubiquitination.
View Article and Find Full Text PDFVarious pear plant cultivars exhibit diverse abilities to resist pear black spot disease (BSD), while the precise molecular mechanisms of resistance against pear BSD remain unclear. This study proposed a profound expression of a WRKY gene, namely PbrWRKY70, derived from Pyrus bretschneideri Rehd, within a BSD-resistant pear cultivar. Comparative analysis against the wild-type revealed that the overexpression of PbrWRKY70 engendered augmented BSD resistance of transgenic Arabidopsis thaliana and pear calli.
View Article and Find Full Text PDFStone cells negatively affect fruit quality because of their firm and lignified cell walls, so are targets for reduction in pear breeding programmes. However, there is only limited knowledge of the molecular mechanisms underlying the formation of stone cells. Here, we show that PbrMYB169, an R2R3 MYB transcription factor, of Pyrus bretschneideri positively regulates lignification of stone cells in pear fruit.
View Article and Find Full Text PDF