ACS Appl Mater Interfaces
September 2024
Metal alloys not only increase the composition and spatial distribution of elements but also provide the opportunity to adjust their physicochemical properties. Recently, multimetallic alloy nanocatalysts have attracted great attention in energy applications and the chemical industry. This work presents the production of three ternary PdCuSn nanocrystalline assemblies with similar compositions via a one-step hydrothermal method.
View Article and Find Full Text PDFIn recent years, preparing precious metal catalysts with a controllable morphology has become a hot research topic for researchers. In this study, monodispersed palladium (Pd) nanoparticles (NP) and ultrathin Pd twisty nanowire networks (TNN) were synthesized in a solvothermal system using ,-dimethylformamide (DMF) and oleylamine (OAm) as solvents, Transmission electron microscopy (TEM) images reveal the successful synthesis of nanoparticles and ultrathin TNN microstructures. Electrochemical data show that the current densities of Pd-NP and Pd-TNN for the ethanol oxidation reaction (EOR) reach 1878 mA mg and 1765 mA mg, respectively.
View Article and Find Full Text PDFDirect alcohol fuel cells are popular due to their high energy density, abundant sources, and ease of transportation and storage. Palladium-based nanosheet self-assembled materials have emerged as an effective catalyst for alcohol oxidation reactions. In this work, nanosheets were synthesized with the same feeding ratio assembly of alloyed PdM (M = Ag, Cu, and Sn).
View Article and Find Full Text PDFHigh-entropy alloy nanoparticles (HEA NPs) have aroused great interest globally with their unique electrochemical, catalytic, and mechanical properties, as well as diverse activity and multielement tunability for multi-step reactions. Herein, a facile low-temperature synthesis method at atmospheric pressure is employed to synthesize Pd-enriched-HEA-core and Pt-enriched-HEA-shell NPs with a single phase of face-centred cubic structure. Interestingly, the lattice of both Pd-enriched-HEA-core and Pt-enriched-HEA-shell enlarge during the formation process of HEA, with tensile strains included in the core and shell of HEA.
View Article and Find Full Text PDF