Publications by authors named "Likai Zheng"

Carbonyl-containing aromatic ketones or aldehydes have been demonstrated to be effective defect passivators for perovskite films to improve performances of perovskite solar cells (PSCs). It has been claimed that both π-electrons within aromatic units and carbonyl groups can, separately, interact with ionic defects, which, however, causes troubles in understanding the passivation mechanism of those aromatic ketone/aldehyde molecules. Herein, we clarify the effect of both moieties in one molecule on the defect passivation by investigating three aromatic aldehydes with varied conjugation planes, namely, biphenyl-4-carbaldehyde (BPCA), naphthalene-2-carbaldehyde (NACA) and pyrene-1-carbaldehyde (PyCA).

View Article and Find Full Text PDF

Carbonyl-containing materials employed in state-of-the-art hybrid lead halide perovskite solar cells (PSCs) exhibit a strong structure-dependent electron donor effect that predominates in defect passivation. However, the impact of the molecular spatial conformation on the efficacy of carbonyl-containing passivators remains ambiguous, hindering the advancement of molecular design for passivating materials. Herein, we show that altering the spatial torsion angle of aromatic ketones from twisted to planar configurations, as seen in benzophenone (BP, 27.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskite materials, such as formamidinium lead iodide (FAPbI), are among the most promising emerging photovoltaic materials. However, the spontaneous phase transition from the photoactive perovskite phase to an inactive non-perovskite phase complicates the application of FAPbI in solar cells. To remedy this, alkali metal cations, most often Cs, Rb or K, are included during perovskite synthesis to stabilize the photoactive phase.

View Article and Find Full Text PDF

Electron-withdrawing molecules (EWMs) have exhibited remarkable efficacy in boosting the performance of perovskite solar cells (PSCs). However, the underneath mechanisms governing their positive attributes remain inadequately understood. Herein, we conducted a comprehensive study on EWMs by comparing 2,2'-(2,5-cyclohexadiene-1,4-diylidene) bismalononitrile (TCNQ) and (2,3,5,6-tetrafluoro-2,5-cyclohexadiene-1,4-diylidene) dimalononitrile (F4TCNQ) employed at the perovskite/hole transport layer (HTL) interfaces.

View Article and Find Full Text PDF

Host-guest complexation offers a promising approach for mitigating surface defects in perovskite solar cells (PSCs). Crown ethers are the most widely used macrocyclic hosts for complexing perovskite surfaces, yet their supramolecular interactions and functional implications require further understanding. Here we show that the dipole moment of crown ethers serves as an indicator of supramolecular interactions with both perovskites and precursor salts.

View Article and Find Full Text PDF
Article Synopsis
  • Perovskite solar cells (PSCs) are enhanced through modifications and passivation, focusing on interface adjustments and bulk doping.
  • Fluorine (F)-containing materials are preferred due to their water-repellent properties and ability to bond with other materials.
  • The review outlines advancements in using F materials to improve the efficiency and stability of PSCs, highlighting their potential in future developments.
View Article and Find Full Text PDF

Background: Riboflavin, a vital water-soluble vitamin with antioxidative activity, plays a critical role in maintaining overall bodily health and defense responses. However, its impact on fragrant rice yield and aroma remains unexplored.

Results: In a 2022 pot experiment with Meixiangzhan and Yuxiangyouzhan fragrant rice cultivars, we applied riboflavin foliar treatments at concentrations of 0 (CK), 10 (R10), 20 (R20), and 40 (R40) mg L during the initial heading stage.

View Article and Find Full Text PDF