Marine cyanobacteria represent a promising yet underexplored source of novel natural products with potent biological activities. Historically, the focus has been on isolating cytotoxic compounds from marine cyanobacteria, but a substantial number of these photosynthetic microorganisms also produce diverse specialized molecules with significant anti-infective properties. Given the global pressing need for new anti-infective lead compounds, this review provides a concise yet comprehensive overview of the current knowledge on anti-infective secondary metabolites derived from marine cyanobacteria.
View Article and Find Full Text PDFMarine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf.
View Article and Find Full Text PDFDiverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions.
View Article and Find Full Text PDFNatural products derived from marine sponges have exhibited bioactivity and, in some cases, serve as potent quorum sensing inhibitory agents that prevent biofilm formation and attenuate virulence factor expression by pathogenic microorganisms. In this study, the inhibitory activity of the psammaplin-type compounds, psammaplin A () and bisaprasin (), isolated from the marine sponge, , are evaluated in quorum sensing inhibitory assays based on the PAO1 (ASV) and (ASV) biosensor strains. The results indicate that psammaplin A () showed moderate inhibition on expression, but significantly inhibited the QS-gene promoter, , with IC values at 14.
View Article and Find Full Text PDFA new cyclic depsipeptide, triproamide (), containing the rare 4-phenylvaline (dolaphenvaline, Dpv) and a β-amino acid, dolamethylleucine (Dml), originally found in dolastatin 16, was isolated from the polar VLC-derived fraction of the extracts prepared from the marine cyanobacterium . Triproamide () was isolated along with the known molecule kulokainalide-1 (), as well as its two new analogues, pemukainalides A () and B (). Their planar structures were elucidated based on extensive NMR and mass spectrometric data.
View Article and Find Full Text PDFThree new cyanobactins, trikoramides B ()-D (), have been isolated from the marine cyanobacterium, , following a preliminary bioassay-guided isolation of the two most active polar fractions based on the brine shrimp toxicity assay. These new cyanobactins are new analogues of the previously reported cytotoxic trikoramide A () with differences mainly in the -prenylated cyclotryptophan unit. Their planar structures were elucidated from their 1D and 2D NMR spectral data in combination with the HRMS/MS data.
View Article and Find Full Text PDFTrikoveramides A - C, members of the kulolide superfamily of cyclic depsipeptides, were isolated from the marine cyanobacterium, Symploca hydnoides, collected from Bintan Island, Indonesia. Their planar structures were elucidated by a combination of NMR spectroscopy and HRMS spectral data. The absolute configurations of the amino acid and phenyllactic acid units were confirmed by Marfey's and chiral HPLC analyses, respectively, while the relative stereochemistry of the 3-hydroxy-2-methyl-7-octynoic acid (Hmoya) unit in trikoveramide A was elucidated by the application of the J-based configuration analysis and NOE correlations.
View Article and Find Full Text PDFMarine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, , once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011.
View Article and Find Full Text PDFThe prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation.
View Article and Find Full Text PDFA new cyclic decapeptide, trikoramide A (), has been isolated from samples of the marine cyanobacterium , collected from Bintan Island, Indonesia. Trikoramide A () is a C-prenylated cyclotryptophan-containing cyanobactin. Its planar structure was deduced by 1D and 2D NMR spectroscopy as well as HR-MS/MS data.
View Article and Find Full Text PDFMicrobiol Resour Announc
October 2019
Here, we report the draft genome sequence of a marine bacterium, sp. strain 018/SC-01/001, isolated from the marine sponge sp. collected from the Singapore Strait.
View Article and Find Full Text PDFMicrobiol Resour Announc
August 2019
We report the draft genome sequence of a marine bacterium, sp. strain 007/AIA-02/001, isolated from the marine sponge , obtained from water off the coast of Singapore. The analysis of the bacterial genome using the bioinformatics tool antiSMASH 4.
View Article and Find Full Text PDFMar Drugs
January 2019
With 70% of the Earth's surface covered in water, the marine ecosystem offers immense opportunities for drug discovery and development. Due to the decreasing rate of novel natural product discovery from terrestrial sources in recent years, many researchers are beginning to look seaward for breakthroughs in new therapeutic agents. As part of an ongoing marine drug discovery programme in Singapore, an integrated approach of combining metabolomic and genomic techniques were initiated for uncovering novel anti-quorum sensing molecules from bacteria associated with subtidal samples collected in the Singapore Strait.
View Article and Find Full Text PDFCertain strains of cyanobacteria produce a wide array of cyanotoxins, such as microcystins, lyngbyatoxins and aplysiatoxins, that are associated with public health issues. In this pilot study, an approach combining LC-MS/MS and molecular networking was employed as a rapid analytical method to detect aplysiatoxins present in four environmental marine cyanobacterial samples collected from intertidal areas in Singapore. Based on 16S-ITS rRNA gene sequences, these filamentous cyanobacterial samples collected from Pulau Hantu were determined as , sp.
View Article and Find Full Text PDFThe β-hydroxy/amino acid unit is a common structural feature of many bioactive marine cyanobacterial depsipeptides. In this study, the absolute stereochemistry of the β-hydroxy acid moieties in hantupeptins and trungapeptins were determined through their synthesis and HPLC analysis of the Mosher ester derivatives. Synthesis of two3-hydroxy-2-methyloctanoic acid (Hmoa) stereoisomers, (2S,3R)-Hmoa and (2S,3S)-Hmoa, were achieved using diastereoselective asymmetric method and the retention times of all four Hmoa isomers were established indirectly by RPLC-MS analysis of their Mosher ester derivative standards.
View Article and Find Full Text PDFTropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences.
View Article and Find Full Text PDFThe tropical marine cyanobacterium, Moorea bouillonii, has gained recent attention as a rich source of bioactive natural products. Continued chemical investigation of this cyanobacterium, collected from New Britain, Papua New Guinea, yielded a novel cytotoxic cyclic depsipeptide, bouillonamide (1), along with previously reported molecules, ulongamide A and apratoxin A. Planar structure of bouillonamide was established by extensive 1D and 2D NMR experiments, including multi-edited HSQC, TOCSY, HBMC, and ROESY experiments.
View Article and Find Full Text PDFFilamentous marine cyanobacteria have emerged as an important source of novel lead compounds for drug discovery and development. The majority of these molecules are nitrogen-containing, belonging to the hybrid polyketide-polypeptide structural class. Owing to their specific interactions with cellular targets, several marine cyanobacterial compounds are currently being pursued for drug development in various disease areas, including cancer, neurodegenerative disorders and infectious disease.
View Article and Find Full Text PDFLagunamides A (1) and B (2) are potent cytotoxic cyclic depsipeptides isolated from the filamentous marine cyanobacterium, Lyngbya majuscula, from Pulau Hantu, Singapore. These compounds are structurally related to the aurilide-class of molecules, which have been reported to possess exquisite antiproliferative activities against cancer cells. The present study presents preliminary findings on the selectivity of lagunamides against various cancer cell lines as well as their mechanism of action by studying their effects on programmed cell death or apoptosis.
View Article and Find Full Text PDFLagunamide C (1) is a cytotoxic cyclodepsipeptide isolated from the marine cyanobacterium, Lyngbya majuscula, from the western lagoon of Pulau Hantu Besar, Singapore. The complete structural characterization of the molecule was achieved by extensive NMR spectroscopic analysis as well as chemical manipulations. Several methods, including the advanced Marfey's method, a modified method based on derivatization with Mosher's reagents and analysis using LC-MS, and the use of (3)J(H-H) coupling constant values, were utilized for the determination of its absolute configuration.
View Article and Find Full Text PDFLagunamides A (1) and B (2) are new cyclic depsipeptides isolated from the marine cyanobacterium Lyngbya majuscula obtained from Pulau Hantu Besar, Singapore. The planar structural characterization of these molecules was achieved by extensive spectroscopic analysis, including 2D NMR experiments. In addition to Marfey's method and (3)J(H-H) coupling constant values, a modified method based on Mosher's reagents and analysis using LC-MS was deployed for the determination of the absolute configuration.
View Article and Find Full Text PDFFilamentous benthic marine cyanobacteria are a prolific source of structurally unique bioactive secondary metabolites. A total of 12 secondary metabolites, belonging to the mixed polyketide-polypeptide structural class, were isolated from the marine cyanobacterium, Lyngbya majuscula, and were tested to determine if they showed activity against barnacle larval settlement. The assays revealed four compounds, dolastatin 16, hantupeptin C, majusculamide A, and isomalyngamide A, that showed moderate to potent anti-larval settlement activities, with EC(50) values ranging from 0.
View Article and Find Full Text PDFHantupeptins B (2) and C (3) were isolated, along with the previously reported hantupeptin A (1), from the marine cyanobacterium, Lyngbya majuscula, collected from Pulau Hantu Besar, Singapore. Their structures were elucidated by interpretation of extensive 1D and 2D NMR spectroscopic data. Compounds 2 and 3 are cyclic depsipeptides consisting of five alpha-amino/hydroxy acid residues, including phenyllactic acid, proline, N-methyl-valine, valine, N-methyl-isoleucine, and a beta-hydroxy acid unit with different degrees of unsaturation at the terminal end of each molecule.
View Article and Find Full Text PDFChemical investigation of the marine cyanobacterium Lyngbya majuscula from Pulau Hantu Besar, Singapore, has led to the isolation of a cyclodepsipeptide, hantupeptin A (1). The planar structure of 1 was assigned on the basis of extensive 1D and 2D NMR spectroscopic experiments. The absolute configuration of the amino and hydroxyl acid residues in the molecule was determined by application of the advanced Marfey method, chiral HPLC analysis, and Mosher's method.
View Article and Find Full Text PDF