Membranes (Basel)
March 2023
Obtaining fresh drinking water is a challenge directly related to the change in agricultural, industrial, and societal demands and pressure. Therefore, the sustainable treatment of saline water to get clean water is a major requirement for human survival. In this review, we have detailed the use of electrospun nanofiber-based membranes (ENMs) for water reclamation improvements with respect to physical and chemical modifications.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2022
In this investigation, the electrospraying of CNTs on an electrospun PVDF-Co-HFP membrane was carried out to fabricate robust membranes for the membrane distillation (MD) process. A CNT-modified PVDF-Co-HFP membrane was heat pressed and characterized for water contact angle, liquid entry pressure (LEP), pore size distribution, tensile strength, and surface morphology. A higher water contact angle, higher liquid entry pressure (LEP), and higher tensile strength were observed in the electrosprayed CNT-coated PVDF-Co-HFP membrane than in the pristine membrane.
View Article and Find Full Text PDFMembrane Distillation (MD) is a membrane-based, temperature-driven water reclamation process. While research emphasis has been largely on membrane design, upscaling of MD has prompted advancements in energy-efficient module design and configurations. Apart from the four conventional configurations, researchers have come up with novel MD membrane module designs and configurations to improve thermal efficiency.
View Article and Find Full Text PDFIn this study, we propose a novel module design to integrate forward osmosis (FO) and membrane distillation (MD). The two processes are sealed in one module and operated simultaneously, making the system compact and suitable for a wide range of applications. To evaluate the system under large-scale module operating conditions, FO and MD experiments were performed separately.
View Article and Find Full Text PDFEngineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents.
View Article and Find Full Text PDFCurrently, the application of nanotechnology in bone tissue regeneration is a challenge for the fabrication of novel bioartificial bone grafts. These nanostructures are capable of mimicking natural extracellular matrix with effective mineralization for successful regeneration of damaged tissues. The simultaneous electrospraying of nanohydroxyapatite (HA) on electrospun polymeric nanofibrous scaffolds might be more promising for bone tissue regeneration.
View Article and Find Full Text PDF