Triboelectric nanogenerators (TENGs) are highly promising as implantable, degradable energy sources and self-powered sensors. However, the degradable triboelectric materials are often limited in terms of contact electrification and mechanical properties. Here, a bio-macromolecule-assisted toughening strategy for PVA aerogel-based triboelectric materials is proposed.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2024
Human-machine interactions (HMIs) have penetrated into various academic and industrial fields, such as robotics, virtual reality, and wearable electronics. However, the practical application of most human-machine interfaces faces notable obstacles due to their complex structure and materials, high power consumption, limited effective skin adhesion, and high cost. Herein, we report a self-powered, skin adhesive, and flexible human-machine interface based on a triboelectric nanogenerator (SSFHMI).
View Article and Find Full Text PDFEconomically and efficiently removing organic pollutants from water is still a challenge in wastewater treatment. Utilizing environmentally friendly and readily available protein-based natural polymers to develop aerogels with effective removal performance and sustainable regeneration capability is a promising strategy for adsorbent design. Here, a robust and cost-effective method using inexpensive β-lactoglobulin (BLG) as raw material was proposed to fabricate BLG-based aerogels.
View Article and Find Full Text PDFCancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant.
View Article and Find Full Text PDFThe damage of corneal epithelium may lead to the formation of irreversible corneal opacities and even blindness. The migration rate of corneal epithelial cells directly affects corneal repair. Here, we explored ocu-microRNA 24-3p (miRNA 24-3p) that can promote rabbit corneal epithelial cells migration and cornea repair.
View Article and Find Full Text PDFUncontrolled hemorrhage resulting from severe trauma or surgical operations remains a challenge. It is highly important to develop functional materials to treat noncompressible wound bleeding. In this work, a shape-recoverable macroporous nanocomposite hydrogel was facilely created through ice templating polymerization.
View Article and Find Full Text PDFSupramolecular and dynamic covalent crosslinking (DCC) hydrogels not only display unique physicochemical properties that can mimic the dynamic extracellular matrix (ECM), but also have the capabilities of shear-thinning, self-healing and even shape memorizing. Specifically, through the breaking and reforming of the reversible linkage, cells can be readily encapsulated in the matrix and can well maintain their differentiation potentials. The dynamic shear-thinning and self-healing hydrogels can also be explored as cell-compatible bio-inks for the design of complex multicellular structures.
View Article and Find Full Text PDFA supramolecular hybrid hydrogel displaying a wide array of dynamic physical properties along with enhanced in vivo stem cell retention has been developed. The key strategy is facilely polymerizing bioactive gelatin methacrylate (GelMA) with 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA) to generate one hybrid branched copolymer. Rapid gelation occurs upon increasing the temperature above the lower critical solution temperature (LCST) of this supramolecular copolymer, where PMEO2MA segments dehydrate and assemble into clusters, providing a hydrophobic microenvironment facilitating UPy dimerization to connect polymer chains, thus forming quadruple hydrogen bond reinforced crosslinking networks.
View Article and Find Full Text PDFHydrogels with self-healing features that can spontaneously repair themselves upon mechanical damage are increasingly attractive for biomedical applications. Many attempts have been made to develop unique hydrogels possessing this property, as well as stimuli-responsiveness and biocompatibility; however, the hydrogel fabrication strategies often involve specific design of functional monomers that are able to optimally provide reversible physical or chemical interactions. Here, we report that weak hydrogen bonds, provided by oligo(ethylene glycol) methacrylate (OEGMA) and methacrylic acid (MAA), a monomer combination that is commonly used to prepare chemically cross-linking hydrogels, can generate self-healable hydrogels with mechanically resilient and adhesive properties through a facile one-step free radical copolymerization.
View Article and Find Full Text PDFHydrogels are promising 3D materials that have demonstrated increasing applications in the encapsulation and delivery of drugs and cells. Herein we report an injectable colloidal hydrogel that directly assembled by graphene oxide (GO) and thermo-sensitive nanogels (tNG). The pH dependent hydrogen bonding interactions between the carboxyl and oxethyl groups induce the reversible assembly of GO and nanogels.
View Article and Find Full Text PDFGraphene materials have unique structures and outstanding thermal, optical, mechanical and electronic properties. In the last decade, these materials have attracted substantial interest in the field of nanomaterials, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of antibacterial agents.
View Article and Find Full Text PDF