Construction waste (CW) is produced in large quantities, resulting in severe land occupation and resource depletion. This study utilized CW as fillers to construct a denitrification biofilter (DNBF-CW) for treating secondary effluent from wastewater plants. Performance and mechanism were analyzed by water quality, biomass and its distribution, physicochemical characteristics, microbial community structure, extracellular polymeric substances and protein secondary structure analysis.
View Article and Find Full Text PDFThe sorption behavior of single contaminant on microplastics (MPs) has been extensively studied; however, little is known about that in the more actual scenario containing multiple contaminants. In this study, the interaction between triclosan (TCS) and its primary metabolite, methyl triclosan (MTCS) on polyethylene (PE), polystyrene (PS), and soil was investigated. Results indicate that the more hydrophobic MTCS had much higher sorption capacity and affinity than TCS.
View Article and Find Full Text PDFMicroplastic (MP) pollution in soil has been becoming an emerging environmental hot spot, but little is known about the interaction between MPs and chemical contaminants in soil. In this study, batch experiments were performed to study adsorption-desorption behavior and mechanism of triclosan (TCS) on MPs, polyethylene (PE) and polystyrene (PS), and soil particles. PE showed the highest adsorption rate (29.
View Article and Find Full Text PDFTriclosan (TCS), widely used as an antimicrobial ingredient, is usually introduced into soil by biosolids application, and has presented potential risk in agro-ecosystem. The dissipation pathways of TCS in soil were analyzed in the presence and absence of earthworms (including Metaphire guillelmi and Eisenia fetida). Meanwhile the accumulation and transformation potentials of TCS in the two earthworms were evaluated.
View Article and Find Full Text PDF