Sensing motors and supercapacitors are pivotal in empowering smart systems, honing energy management, and facilitating the seamless integration of responsive electronics. Harnessing the electrochemistry of methylcellulose-polyaniline (MC/PANI) composites, this research delves into their potential applications as reactive current sensing supercapacitors with single connectivity. The electrochemical traits of pristine polyaniline (PANI) and MC/PANI composites were analyzed and assessed for their potential applications in sensors and energy storage devices.
View Article and Find Full Text PDFConducting polymers can mimic the sensing characteristics of biological muscles through utilizing their unique electrochemical reactions. As these reactions occur, alterations in composition prompt changes in biomimetic properties, such as shifts in volume, brought about by the insertion of anions and solvent molecules, resulting in conformational movements. Similar to biological muscles, these electrochemical reaction senses the working variables affecting the reaction rate, through the same two connecting wires.
View Article and Find Full Text PDFA polypyrrole/hydrogel hybrid film composed of macromolecular electrochemical machines fabricated through an chemical polymerization of pyrrole is considered here as a flexible model material of the intracellular matrix of ectothermic muscle cells which is aware of ambient thermal energy. The polypyrrole component imparts excellent electroactivity and good electronic conductivity for the hybrid film. The hybrid film can go through consecutive fundamental conformational energetic states progressively and reversibly under electrochemical control and acts as a multi-step macromolecular motor.
View Article and Find Full Text PDF