Plants often encounter incompatible growing conditions, such as drought, extreme temperatures, salinity, and heavy metals, which negatively impact their growth and development, resulting in reduced yield and, in severe cases, plant death. These stresses trigger the synthesis of plant secondary metabolites (PSMs), which help plants develop strategies to deter enemies, combat pathogens, outcompete competitors, and overcome environmental restraints. PSMs are released into the rhizosphere and play crucial roles in plant defense and communication.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is an immune-cold tumor characterized by an immunosuppressive microenvironment with low cytotoxic activity to eliminate tumor cells. Tumor escape is one of the initial steps in cancer development. Understanding the underlying mechanisms of cancer escape can help researchers develop new treatment strategies.
View Article and Find Full Text PDFCarbonic anhydrases (CAs) are critical metalloenzymes, widely exist in organisms, which involve in many physiological processes, including response to adverse environmental conditions. Although CA genes have been comprehensive identified and analyzed in numerous plants, there are a few of reports in cotton. Therefore, we conducted an exhaustive research for CA genes from two tetraploid cotton species and their ancestral species.
View Article and Find Full Text PDFObjectives: Amikacin is crucial for treating Mycobacterium abscessus (Mab) infections, with resistance primarily attributed to rrs gene mutations. The correlation between specific mutations and amikacin susceptibility, along with the associated fitness cost, requires further investigation.
Methods: We isolated spontaneous amikacin-resistant mutants in vitro and identified their mutation sites in the rrs gene via Sanger sequencing, which were then compared with existing reports.
Mycobacterium abscessus (Mab) poses serious therapeutic challenges, largely due to its intrinsic resistance to many antibiotics. The development of targeted therapeutic strategies necessitates the identification of bacterial factors that contribute to its reduced susceptibility to antibiotics and/or to the killing by its host cells. In this study, we discovered that Mab strains with disrupted mtrA, mtrB or both, or a gene-edited mtrA encoding MtrA with Tyr102Cys mutation, exhibited highly increased sensitivity to various drugs compared to the wild-type Mab.
View Article and Find Full Text PDFClimate change not only leads to high temperatures, droughts, floods, storms and declining soil quality, but it also affects the spread and mutation of pests and diseases, which directly influences plant growth and constitutes a new challenge to food security. Numerous hormones like auxin, ethylene and melatonin, regulate plant growth and development as well as their resistance to environmental stresses. To mitigate the impact of diverse biotic and abiotic stressors on crops, single or multiple phytohormones in combination have been applied.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2025
exhibits intrinsic resistance to most antibiotics, hence leading to infections that are difficult to treat. To address this issue, the identification of new molecular targets is essential for the development or repositioning of therapeutic agents. This study demonstrated that the -knockout strain, Mab, became significantly susceptible to a range of antibiotics, not only but also exhibited susceptibility to rifabutin, bedaquiline, and linezolid .
View Article and Find Full Text PDFThe Novel Duck Reovirus (NDRV) infection poses a significant health risk to ducks, primarily attributed to the absence of efficacious preventive measures. This research aimed to investigate whether the administration of isolated Bacillus could protect antagonistic NDRV infection in a Cherry Valley duck model. Four indigenous Bacillus strains from the feces of healthy ducks demonstrated promising biosafety profiles.
View Article and Find Full Text PDFClimatic change and extreme weather events have become a major threat to global agricultural productivity. Plants coexist with microorganisms, which play a significant role in influencing their growth and functional traits. The rhizosphere serves as an ecological niche encompassing plant roots and is a chemically complex environment that supports the growth and development of diverse plant-interactive microbes.
View Article and Find Full Text PDFMelatonin helps to regulate various physiological processes in plants, including growth, seed germination, and stress responses. However, the mechanism of how melatonin treatments affect soil microbe diversity and ecology, and plant growth needs to be better understood. Here, we report that melatonin coordinates interactions between soil microorganisms and root exudates to create a friendly soil environment for peanut growth under a controlled environment.
View Article and Find Full Text PDFIn this work, we aim to unveil the general correlations between the performance of a physical reservoir computing (RC) system and the inherent nonlinear dynamics of the adopted device. Taking the metal-ferroelectric-metal (MFM) capacitor, one of the most popular candidate devices for compute-in-memory (CIM) technology, as the computational platform, we construct a nonlinear dynamical model of polarization in the ferroelectric layer. We then design the physical RC utilizing a single and/or an array of MFM capacitors by analyzing the model's stability and feasible dynamical cases.
View Article and Find Full Text PDFAt the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture.
View Article and Find Full Text PDFNovel duck reovirus disease is an infectious disease mainly caused by novel duck reovirus (NDRV), which is characterized by spleen necrosis and persistent diarrhea in ducks. However, the pathogenic mechanism of NDRV infection in Cherry Valley ducks remains unclear. To investigate the distribution of NDRV in the intestines of Cherry Valley ducks, intestinal morphogenesis, intestinal permeability, inflammatory cytokines, and the expression of tight junction proteins (TJPs), we introduced NDRV via intramuscular infection.
View Article and Find Full Text PDFHot-pressed saloplastics are dense and transparent polyelectrolyte complex materials governed by ionic crosslinking. Such plastics have several advantages, for example, salt water processibility and recyclability. Here, we demonstrate a simple but effective post-treatment method to incorporate lysozyme as a biocatalytic component into the hot-pressed saloplastics.
View Article and Find Full Text PDFImproving oil yield and quality is a major goal for crop breeding, and CRISPR/Cas-mediated genome editing has opened a new era for designing oil crops with enhanced yield and quality. CRISPR/Cas technology can not only increase oil production but also enhance oil quality, including enhancing pharmaceutical and health components, improving oil nutrients, and removing allergic and toxic components. As new molecular targets for oil biosynthesis are discovered and the CRISPR/Cas system is further improved, CRISPR/Cas will become a better molecular tool for designing new oil crops with higher oil production, enhanced nutrients, and improved health components.
View Article and Find Full Text PDFTwo-dimensional (2D) inorganic nanomaterials have garnered extensive attention in the fabrication of inorganic nanofiltration membranes due to their unique structures and properties. In this study, we developed a facile process for fabricating large-scale ultrahydrophilic nanofiltration membranes using layered titanate HTiO·HO nanosheets (HT-ns). A drying deposition process was used to fabricate HT-ns membranes on a poly(tetrafluoroethylene) (TF) substrate.
View Article and Find Full Text PDFThiophenol (PhSH) is an important industrial intermediate but displays significant toxicity towards environmental and biological systems. Here, we introduce a supramolecular system based on β-cyclodextrin (β-CD) and boron dipyrromethene (BODIPY) as a ratiometric fluorescence probe to discriminate PhSH in environmental water samples, cells, and in vivo. In aqueous solutions, BODIPY shows extremely weak fluorescence intensity due to its aggregation into nanometer-sized clusters, which prevents its interaction with thiols.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2024
In northern China, soil temperature slowly rises in spring, often subjecting apple roots to sub-low-temperature stress. Sugar acts as both a nutrient and signaling molecule in roots in response to low-temperature stress. To explore the effects of exogenous sugars on the growth and nutrient absorption of Borkh.
View Article and Find Full Text PDFAmidst pressing global environmental challenges, exacerbated by climate change and the imminent threat of global warming, there is a critical need to assess the efficacy of environmental policies. This study centers its attention on the pivotal role of these policies in addressing environmental concerns. Specifically, our research aims to scrutinize the impact of stringent environmental policies on environmental quality under the theoretical underpinnings of environmental Kuznets curve.
View Article and Find Full Text PDFTrends Plant Sci
December 2024
Although transgenic Bacillus thuringiensis (Bt) crops have brought various ecological and socioeconomic benefits, there is evidence suggesting that pests will eventually develop resistance to Bt crops. Thus, additional genes are urgently needed to engineer pest resistance in plants. A recent study by Mo et al.
View Article and Find Full Text PDFFe-MOFs of mixed valence was synthesized by a solvothermal method via the in-situ reduction of ethylene glycol (EG) pre-coordination with the proper ratio of Fe/Fe between 0.83 and 2.46.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
A new transfer approach was proposed to share calibration models of the hexamethylenetetramine-acetic acid solution for studying hexamethylenetetramine concentration values across different near-infrared (NIR) spectrometers. This approach combines Savitzky-Golay first derivative (S_G_1) and orthogonal signal correction (OSC) preprocessing, along with feature variable optimization using an adaptive chaotic dung beetle optimization (ACDBO) algorithm. The ACDBO algorithm employs tent chaotic mapping and a nonlinear decreasing strategy, enhancing the balance between global and local search capabilities and increasing population diversity to address limitations observed in traditional dung beetle optimization (DBO).
View Article and Find Full Text PDFBiocatalytic membranes combine the separation properties of membranes and the catalytic abilities of enzymes, holding great promise for industries where both purification and conversion are required. In this work, polyelectrolyte complex membranes incorporated with lysozyme were prepared using polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) through a one-step and mild pH shift aqueous phase separation (APS) approach. The effects of lysozyme addition and casting solution pH on the membrane properties were studied.
View Article and Find Full Text PDFβ-GaO is an ultrawide-band gap semiconductor with excellent potential for high-power and ultraviolet optoelectronic device applications. Low thermal conductivity is one of the major obstacles to enable the full performance of β-GaO-based devices. A promising solution for this problem is to integrate β-GaO with a diamond heat sink.
View Article and Find Full Text PDF