Publications by authors named "Lijia Luo"

Nonalcoholic fatty liver disease (NAFLD) is recognized as a significant public health problem worldwide. Several clinical studies have investigated the associations between Per- and poly-fluoroalkyl substances (PFAS) compounds with the risk of NAFLD in general adults, but the mediating effect of triglycerides (TG) was remained unexplored. In this study, 6990 individuals from the National Health and Nutrition Examination Survey (NHANES, 2003-2018) database were enrolled.

View Article and Find Full Text PDF

Bolted joints are widely used in various machines and engineering structures. The tightening state of bolts directly affects the reliability and safety of bolted joints. Therefore, the bolt looseness detection is very important to ensure the reliability of bolted joints.

View Article and Find Full Text PDF

The electronic, optical and photocatalytic properties of GaN/CN van der Waals heterostructures are investigated using the first-principles theory, and effective regulation through element doping or strain is achieved further. The results show that the GaN/CN heterostructure exhibits a type-II band alignment with an indirect band gap of 2.25 eV, which benefits photocatalytic water splitting.

View Article and Find Full Text PDF

The prevailing desmoplastic stroma and immunosuppressive microenvironment within pancreatic ductal adenocarcinoma (PDAC) pose substantial challenges to therapeutic intervention. Despite the potential of protein tyrosine kinase (PTK) inhibitors in mitigating the desmoplastic stromal response and enhancing the immune milieu, their efficacy is curtailed by suboptimal pharmacokinetics (PK) and insufficient tumor penetration. To surmount these hurdles, we have pioneered a novel strategy, employing lipid bilayer-coated mesoporous silica nanoparticles (termed "silicasomes") as a carrier for the delivery of Nintedanib.

View Article and Find Full Text PDF

While oral desensitization is capable of alleviating peanut allergen anaphylaxis, long-term immune tolerance is the sought-after goal. We developed a liver-targeting lipid nanoparticle (LNP) platform to deliver mRNA-encoded peanut allergen epitopes to liver sinusoidal endothelial cells (LSECs), which function as robust tolerogenic antigen-presenting cells that induce FoxP3 regulatory T-cells (Tregs). The mRNA strand was constructed by including nucleotide sequences encoding for nonallergenic MHC-II binding T-cell epitopes, identified in the dominant peanut allergen, Ara h2.

View Article and Find Full Text PDF

Purpose: To apply propensity score matching to evaluate the impact of peripapillary staphylomas (PPS) on vascular and structural characteristics in the myopic eyes.

Methods: This was a prospective, cross-sectional study. Forty-one control eyes and 41 eyes with PPS were analyzed.

View Article and Find Full Text PDF

The recently emerging bismuth oxyhalide (BiOX) nanomaterials are promising indirect band gap photosensitizer for ultraviolet (UV) light-triggered phototherapy due to their unique layered nanosheet structure. However, the low absorption and poor photothermal conversion efficiency have always impeded their further applications in cancer clinical therapy. Herein, BiOCl rich in oxygen vacancies has been reported to have full-spectrum absorption properties, making it possible to achieve photothermal property under near-infrared laser.

View Article and Find Full Text PDF

Although toll-like receptor (TLR) agonists hold great promise as immune modulators for reprogramming the suppressive immune landscape in pancreatic ductal adenocarcinoma (PDAC), their use is limited by poor pharmacokinetics (PK) and off-target systemic inflammatory effects. To overcome these challenges as well as to attain drug synergy, we developed a lipid bilayer (LB)-coated mesoporous silica nanoparticle (silicasome) platform for co-delivery of the TLR7/8 agonist 3M-052 with the immunogenic chemotherapeutic agent irinotecan. This was accomplished by incorporating the C18 lipid tail of 3M-052 in the coated LB, also useful for irinotecan remote loading in the porous interior.

View Article and Find Full Text PDF

Mycobacterium bovis (M. bovis) infection triggers cytokine production via pattern recognition receptors. These cytokines include type I interferons (IFNs) and interleukin-1β (IL-1β).

View Article and Find Full Text PDF

Objective: To investigate the microvasculature and structural characteristics of the eyes of myopic patients and their association with posterior staphyloma (PS).

Methods: This was a retrospective, case-control study comprising of 106 eyes from 72 individuals. Using 1:1 matching of axial length (AL) of their eyes, patients were allocated into a PS group or no posterior staphyloma (NPS) group.

View Article and Find Full Text PDF

Many studies have explored changes in the gut microbiome associated with HIV infection, but the consistent pattern of changes has not been clarified. Men who have sex with men (MSM) are very likely to be an independent influencing factor of the gut microbiome, but relevant research is still lacking. We conducted a meta-analysis by screening 12 published studies of 16S rRNA gene amplicon sequencing of gut microbiomes related to HIV/AIDS (six of these studies contain data that is relevant and available to MSM) from NCBI and EBI databases.

View Article and Find Full Text PDF

Background: This study is aimed at identifying unknown clinically relevant genes involved in colorectal cancer using bioinformatics analysis.

Methods: Original microarray datasets GSE107499 (ulcerative colitis), GSE8671 (colorectal adenoma), and GSE32323 (colorectal cancer) were downloaded from the Gene Expression Omnibus. Common differentially expressed genes were filtered from the three datasets above.

View Article and Find Full Text PDF

Drug-loaded nanoparticles can be specifically uptaken by tumor cells to realize active targeting due to the conjugated ligands or antibodies on their surface. However, some non-cancerous cells express non-specific receptors or antigens on their surface, which can react with the ligands or antibodies conjugated on the nanoparticle surface and then result in non-specific uptake of the nanoparticles by non-cancerous cells. In order to reduce the non-specific uptake of nanoparticles by non-cancerous cells, in this study, we proposed a pH-sensitive polymer based precise tumor targeting strategy and synthesized superparamagnetic iron oxide nanoparticle (SPION) encapsulated albumin nanoparticles (AN) with conjugation of folic acid (FA) and mPEG-DCA (SPION-AN-FA@mPEG), in which mPEG can shield FA, avoiding the non-specific recognition by normal cells under physiological conditions, and can be shed to expose FA in tumor microenvironments.

View Article and Find Full Text PDF

Malignant melanoma, one of the most aggressive types of cancer easily metastasizes, making it extremely difficult to treat and unresponsive to current therapies. Recent breakthroughs in nanomaterials-based cancer immunotherapy have provided potential specific strategy for tumor and metastasis inhibition. With the development of nanotechnology, inorganic nanomaterials have been increasingly studied for their potential cancer therapeutic and molecular imaging functions.

View Article and Find Full Text PDF

The efficiency of chemical intercommunication between enzymes in natural networks can be significantly enhanced by the organized catalytic cascades. Nevertheless, the exploration of two-or-more-enzymes-engineered nanoreactors for catalytic cascades remains a great challenge in cancer therapy because of the inherent drawbacks of natural enzymes. Here, encouraged by the catalytic activity of the individual nanozyme for benefiting the treatment of solid tumors, we propose an organized in situ catalytic cascades-enhanced synergistic therapeutic strategy driven by dual-nanozymes-engineered porphyrin metal-organic frameworks (PCN).

View Article and Find Full Text PDF

Currently, cancer immunotherapy appears to be an effective strategy for cancer therapy, but the state of unresponsiveness to tumor antigenic stimulation in immune systems is one of the stumbling blocks to the clinical applications of cancer immunotherapy. Nanomaterials have been increasingly applied in cancer immunotherapy by virtue of their irreplaceable superiority to carry antigens to specific sites and stimulate immune responses. Among the many excellent fluorescent nanomaterials, carbon dots (CDs) stand out from the others as a result of their extraordinary performance.

View Article and Find Full Text PDF

AuroShell nanoparticles (sealed gold nanoshell on silica) are the only inorganic materials that are approved for clinical trial for photothermal ablation of solid tumors. Based on that, porous gold nanoshell structures are thus critical for cancer multiple theranostics in the future owing to their inherent cargo-loading ability. Nevertheless, adjusting the diverse experimental parameters of the reported procedures to obtain porous gold nanoshell structures is challenging.

View Article and Find Full Text PDF

Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D-GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D-GNAs. The reported studies focus on the synthesis of 1D-GNAs and fundamental exploration of CPR.

View Article and Find Full Text PDF

Due to the molecular and cellular heterogeneity of glioma, discovery of novel targeted sites and ligands for glioma imaging and therapy remains challenging. Neuropeptide Y (NPY) Y1 receptors (Y1Rs) are highly over expressed in various brain tumors including glioma, and can serve as potential targeting sites for glioma imaging and therapy. Here, we show by in vivo fluorescent imaging that a highly selective Y1R ligand, [Asn6, Pro34] NPY (AP-NPY), facilitated circumvention of the blood brain barrier (BBB) by nanomicelles specifically targeting glioma.

View Article and Find Full Text PDF

Multifunctional nanoprobes used in magnetic resonance imaging (MRI) and photodynamic therapy (PDT) also have potential applications in diagnosis and visualized therapy of cancers, and hence it is important to investigate the active-targeting ability and in vivo reliability of these nanoprobes. In this work, folic acid (FA)-targeted, photosensitizer (PS)-loaded Fe3O4@NaYF4:Yb/Er (FA-NPs-PS) nanocomposites were synthesized for in vivo T2-weighted MRI and visualized PDT of cancers by modeling MCF-7 tumor-bearing nude mice. By measuring the upconversion luminescence (UCL) and fluorescence emission spectra, the as-prepared FA-NPs-PS nanocomposites showed near-infrared (NIR)-triggered PDT performance due to the production of a singlet oxygen species.

View Article and Find Full Text PDF