Front Bioeng Biotechnol
February 2025
Objectives: The study aimed to evaluate the effect of GeLMA/bFGF hydrogel loaded with dental pulp stem cells (DPSCs) on the repair and regeneration of traumatic optic nerve injury.
Materials And Methods: GeLMA/bFGF hydrogel was photo-cross-linked by LED light. The physical-chemical properties and cytocompatibility of GeLMA/bFGF hydrogel after being squeezed (GeLMA/bFGF-SQ) were evaluated by SEM and degradation analyses, as well as live/dead and CCK-8 assays, respectively.
Nowadays, photodynamic therapy (PDT) offers a non-invasive tumor treatment with high safety profiles and minimal side effects, implying a promising clinical application for patients with malignant tumors. However, the lack of efficacy in metastasis and recurrence still notably limits its application. To solve this problem, one promising strategy is to improve the immune response activated by PDT.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a recurrent and chronic inflammatory skin condition characterized by a high lifetime prevalence and significant impairment of patients' quality of life, primarily due to intense itching and discomfort. However, current pharmacological interventions provide only moderate efficacy and are frequently accompanied by adverse side effects. The immune-pathogenesis of AD involves dysregulation of the Th2 immune response and exacerbation of inflammation related to excessive reactive oxygen species (ROS).
View Article and Find Full Text PDFImmunocompromised populations, including cancer patients, elderly individuals, and those with chronic diseases, are the primary targets of superbugs. Traditional vaccines are less effective due to insufficient or impaired immune cells. Inspired by the "vanguard" effect of neutrophils (NE) during natural infection, this project leverages the ability of NE to initiate the NETosis program to recruit monocytes and DC cells, designing vaccines that can rapidly recruit immune cells and enhance the immune response.
View Article and Find Full Text PDFWound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization.
View Article and Find Full Text PDFThe prolonged existence of chronic wounds heightens the risk of patients experiencing chronic pain, necrosis, and amputation. Dental pulp stem cells (DPSCs) have garnered attention due to their potential immunomodulatory and tissue repair regenerative effects in the management of chronic wounds. However, stem-cell-based therapy faces challenges such as malignant differentiation, immune rejection, and long-term effectiveness.
View Article and Find Full Text PDFPhoto-immunotherapy is a promising strategy for the treatment of malignancies; however, its efficacy is often limited by the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME). TME is typically deficient in L-arginine (L-Arg), which negatively impacts T cell survival and function. To address this issue, we developed a novel drug delivery system based on the multi-vesicular liposomes (MVLs) loaded with photosensitizer indocyanine green (ICG) and L-Arg (R), named R-ICG@MVLs.
View Article and Find Full Text PDFRadiotherapy (RT), a common cancer treatment, unintentionally harms surrounding tissues, including the skin, and hinders wound healing years after treatment. This study aims to understand the mechanisms behind these late-onset adverse effects. We compare skin biopsies from previously irradiated (RT) and non-irradiated (RT) sites in breast cancer survivors who underwent RT years ago.
View Article and Find Full Text PDFRosa roxburghii Tratt is a well-known horticultural crop that produces fruits with extremely high l-ascorbic acid (AsA) levels, and GDP-l-galactose phosphorylase2 (RrGGP2) encodes a major enzyme operating in AsA biosynthesis. This study aims to elucidate the transcriptional mechanism of RrGGP2 underlying AsA overproduction under abiotic stress. Herein, the sequence of RrGGP2 promoter (PRrGGP2) was isolated.
View Article and Find Full Text PDFThe cell transition from an inflammatory phase to a subsequent proliferative phase is crucial for wound healing, yet the driving mechanism remains unclear. By profiling lncRNA expression changes during human skin wound healing and screening lncRNA functions, we identify SNHG26 as a pivotal regulator in keratinocyte progenitors underpinning this phase transition. Snhg26-deficient mice exhibit impaired wound repair characterized by delayed re-epithelization accompanied by exacerbated inflammation.
View Article and Find Full Text PDFMessenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency.
View Article and Find Full Text PDFAdoptive cell therapy (ACT) emerged as a promising approach for cancer treatment, yet its application in solid tumors faced challenges such as inadequate tumor infiltration and cellular dysfunction. Histone acetylation is reported to play a crucial role in restoring T-cell function within tumor tissues. Building upon previous research, a novel strategy involving the co-loading of two drugs, G3C12 and vorinostat (SAHA), into PLGA microspheres to form G3C12+SAHA@PLGA is developed for intratumoral injection.
View Article and Find Full Text PDFBackground: Soil water content is one of the critical indicators in agricultural systems. Visible/near-infrared hyperspectral remote sensing is an effective method for soil water estimation. However, noise removal from massive spectral datasets and effective feature extraction are challenges for achieving accurate soil water estimation using this technology.
View Article and Find Full Text PDFGastrointestinal cancers (GICs) are highly prevalent cancers that threaten human health worldwide. The Wnt/β-catenin signaling pathway has been reported to play a pivotal role in the carcinogenesis of GICs. Numerous interventions targeting the Wnt/β-catenin signaling in GICs are currently being tested in clinical trials with promising results.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) exhibit compromised therapeutic efficacy in many patients with advanced cancers, particularly those with liver metastases. Much of this incapability can be ascribed as an irresponsiveness resulting from the "cold" hepatic tumor microenvironment that acts as T cell "traps" for which there currently lack countermeasures. We report a novel nanomedicine that converts the hepatic immune microenvironment to a "hot" phenotype by targeting hepatic macrophage-centric T cell elimination.
View Article and Find Full Text PDFBackground: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding.
Results: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers.
Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration.
View Article and Find Full Text PDFNumerous evidence has demonstrated that the brain is not an immune-privileged organ but possesses a whole set of lymphatic transport system, which facilitates the drainage of harmful waste from brains to maintain cerebral homeostasis. However, as individuals age, the shrinkage and dysfunction of meningeal and deep cervical lymphatic networks lead to reduced waste outflow and elevated neurotoxic molecules deposition, further inducing aging-associated cognitive decline, which act as one of the pathological mechanisms of Alzheimer's disease. Consequently, recovering the function of meningeal and deep cervical lymph node (dCLNs) networks (as an important part of the brain waste removal system (BWRS)) of aged brains might be a feasible strategy.
View Article and Find Full Text PDFdnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT).
View Article and Find Full Text PDFObjective: Pulp regeneration with bioactive dentin-pulp complex has been a research hotspot in recent years. Stem cell therapy provided an interest strategy to regenerate the dental-pulp complex. Hence, this study aimed to evaluate the effects of photosensitive gelatin methacrylate (GelMA) hydrogel encapsulating dental pulp stem cells (DPSCs) and silver nanoparticles (AgNPs) for dental pulp regeneration in vitro.
View Article and Find Full Text PDFPurpose: Thyroid-associated ophthalmopathy (TAO) may result in increased metabolism and abnormalities in microcirculation. The fractal dimension (Df) of retinal vessels has been shown to be related to the pathology of a number of ophthalmic disorders, but it hasn't been investigated in TAO.
Methods: We analyzed 1078 participants aged 18 to 72 (548 healthy volunteers and 530 TAO).