Laboratory studies show detrimental effects of metallic pollutants on invertebrate behaviour and cognition, even at low levels. Here we report a field study on Western honey bees exposed to metal and metalloid pollution through dusts, food and water at a historic mining site. We analysed more than 1000 bees from five apiaries along a gradient of contamination within 11 km of a former gold mine in Southern France.
View Article and Find Full Text PDFAnalysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains.
View Article and Find Full Text PDFAbstractAnimals regulate their food intake to maximize the expression of fitness traits but are forced to trade off the optimal expression of some fitness traits because of differences in the nutrient requirements of each trait ("nutritional trade-offs"). Nutritional trade-offs have been experimentally uncovered using the geometric framework for nutrition (GF). However, current analytical methods to measure such responses rely on either visual inspection or complex models of vector calculations applied to multidimensional performance landscapes, making these approaches subjective or conceptually difficult, computationally expensive, and, in some cases, inaccurate.
View Article and Find Full Text PDFPollinator declines have raised major concerns for the maintenance of biodiversity and food security, calling for a better understanding of environmental factors that affect their health. Here we used hemolymph analysis to monitor the health status of Western honey bees . We evaluated the intraspecific proteomic variations and key biological activities of the hemolymph of bees collected from four Egyptian localities characterized by different food diversities and abundances.
View Article and Find Full Text PDFUnderstanding how pollinators move across space is key to understanding plant mating patterns. Bees are typically assumed to search for flowers randomly or using simple movement rules, so that the probability of discovering a flower should primarily depend on its distance to the nest. However, experimental work shows this is not always the case.
View Article and Find Full Text PDFRecent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations.
View Article and Find Full Text PDFIncreasing evidence highlights the importance of diet content in nine essential amino acids for bee physiological and behavioural performance. However, the 10th essential amino acid, tryptophan, has been overlooked as its experimental measurement requires a specific hydrolysis. Tryptophan is the precursor of serotonin and vitamin B3, which together modulate cognitive and metabolic functions in most animals.
View Article and Find Full Text PDFPollinators are exposed to numerous parasites and pathogens when foraging on flowers. These biological stressors may affect critical cognitive abilities required for foraging. Here, we tested whether exposure to Nosema ceranae, one of the most widespread parasites of honey bees also found in wild pollinators, impacts cognition in bumblebees.
View Article and Find Full Text PDFWhether animals can actively avoid food contaminated with harmful compounds through taste is key to assess their ecotoxicological risks. Here, we investigated the ability of honey bees to perceive and avoid food resources contaminated with common metal pollutants known to impair behaviour at low concentrations. In laboratory assays, bees did not discriminate food contaminated with arsenic, lead or zinc and ingested it readily, up to estimated doses of 929.
View Article and Find Full Text PDFThe automated quantification of the behaviour of freely moving animals is increasingly needed in applied ethology. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilization, for instance in genetic selection programs of animal breeding. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals.
View Article and Find Full Text PDFAnimals have evolved cognitive abilities whose impairment can incur dramatic fitness costs. While malnutrition is known to impact brain development and cognitive functions in vertebrates, little is known in insects whose small brain appears particularly vulnerable to environmental stressors. Here, we investigated the influence of diet quality on learning and memory in the parasitoid wasp Venturia canescens.
View Article and Find Full Text PDFCentral place foraging pollinators tend to develop multi-destination routes (traplines) to exploit patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in detail, how populations of foragers use resources in a common area is an open question, difficult to address experimentally. We explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers.
View Article and Find Full Text PDFThe current decline of invertebrates worldwide is alarming. Several potential causes have been proposed but metal pollutants, while being widespread in the air, soils and water, have so far been largely overlooked. Here, we reviewed the results of 527 observations of the effects of arsenic, cadmium, lead and mercury on terrestrial invertebrates.
View Article and Find Full Text PDFEnvironmental pollutants can exert sublethal deleterious effects on animals. These include disruption of cognitive functions underlying crucial behaviours. While agrochemicals have been identified as a major threat to pollinators, metal pollutants, which are often found in complex mixtures, have so far been overlooked.
View Article and Find Full Text PDFPollutants can have severe detrimental effects on insects, even at sublethal doses, damaging developmental and cognitive processes involved in crucial behaviours. Agrochemicals have been identified as important causes of pollinator declines, but the impacts of other anthropogenic compounds, such as metallic trace elements in soils and waters, have received considerably less attention. Here, we exposed colonies of the European honey bee Apis mellifera to chronic field-realistic concentrations of lead in food and demonstrated that consumption of this trace element impaired bee cognition and morphological development.
View Article and Find Full Text PDFParasites alter the physiology and behaviour of their hosts. In domestic honey bees, the microsporidia induces energetic stress that impairs the behaviour of foragers, potentially leading to colony collapse. Whether this parasite similarly affects wild pollinators is little understood because of the low success rates of experimental infection protocols.
View Article and Find Full Text PDFInsects have evolved an extraordinary range of nutritional adaptations to exploit other animals, plants, bacteria, fungi and soils as resources in terrestrial and aquatic environments. This special issue provides some new insights into the mechanisms underlying these adaptations. Contributions comprise lab and field studies investigating the chemical, physiological, cognitive and behavioral mechanisms that enable resource exploitation and nutrient intake regulation in insects.
View Article and Find Full Text PDFAchieving a better understanding of the consequences of nutrition to animal fitness and human health is a major challenge of our century. Nutritional ecology studies increasingly use nutritional landscapes to map the complex interacting effects of nutrient intake on animal performances, in a wide range of species and ecological contexts. Here, we argue that opening access to these hard-to-obtain, yet considerably insightful, data is fundamental to develop a comparative framework for nutrition research and offer new quantitative means to address open questions about the ecology and evolution of nutritional processes.
View Article and Find Full Text PDFAnimals have evolved foraging strategies to acquire blends of nutrients that maximize fitness traits. In social insects, nutrient regulation is complicated by the fact that few individuals, the foragers, must address the divergent nutritional needs of all colony members simultaneously, including other workers, the reproductives, and the brood. Here we used 3D nutritional geometry design to examine how bumblebee workers regulate their collection of 3 major macronutrients in the presence and absence of brood.
View Article and Find Full Text PDFHow animals explore and acquire knowledge from the environment is a key question in movement ecology. For pollinators that feed on multiple small replenishing nectar resources, the challenge is to learn efficient foraging routes while dynamically acquiring spatial information about new resource locations. Here, we use the behavioural mapping t-Stochastic Neighbouring Embedding algorithm and Shannon entropy to statistically analyse previously published sampling patterns of bumblebees feeding on artificial flowers in the field.
View Article and Find Full Text PDFAnimals make feeding decisions to simultaneously maximize fitness traits that often require different nutrients. Recent quantitative methods have been developed to characterize these nutritional trade-offs from performance landscapes on which traits are mapped on a nutrient space defined by two nutrients. This limitation constrains the broad applications of previous methods to more complex data, and a generalized framework is needed.
View Article and Find Full Text PDFHoney bee foragers must supply their colony with a balance of pollen and nectar to sustain optimal colony development. Inter-individual behavioural variability among foragers is observed in terms of activity levels and nectar vs. pollen collection, however the causes of such variation are still open questions.
View Article and Find Full Text PDFInsects use path integration (PI) to maintain a home vector, but can also store and recall vector-memories that take them from home to a food location, and even allow them to take novel shortcuts between food locations. The neural circuit of the Central Complex (a brain area that receives compass and optic flow information) forms a plausible substrate for these behaviors. A recent model, grounded in neurophysiological and neuroanatomical data, can account for PI during outbound exploratory routes and the control of steering to return home.
View Article and Find Full Text PDF