Publications by authors named "Lihong Zhan"

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody.

View Article and Find Full Text PDF

Microglia are emerging as key drivers of neurological diseases. However, we lack a systematic understanding of the underlying mechanisms. Here, we present a screening platform to systematically elucidate functional consequences of genetic perturbations in human induced pluripotent stem cell-derived microglia.

View Article and Find Full Text PDF

Activation of microglia is a prominent pathological feature in tauopathies, including Alzheimer's disease. How microglia activation contributes to tau toxicity remains largely unknown. Here we show that nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, activated by tau, drives microglial-mediated tau propagation and toxicity.

View Article and Find Full Text PDF

Microglia are the resident myeloid cells in the central nervous system (CNS). The majority of microglia rely on CSF1R signaling for survival. However, a small subset of microglia in mouse brains can survive without CSF1R signaling and reestablish the microglial homeostatic population after CSF1R signaling returns.

View Article and Find Full Text PDF

Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD.

View Article and Find Full Text PDF

Sex is a key modifier of neurological disease outcomes. Microglia are implicated in neurological diseases and modulated by microRNAs, but it is unknown whether microglial microRNAs have sex-specific influences on disease. We show in mice that microglial microRNA expression differs in males and females and that loss of microRNAs leads to sex-specific changes in the microglial transcriptome and tau pathology.

View Article and Find Full Text PDF

Microglia are resident immune cells that play critical roles in maintaining the normal physiology of the central nervous system (CNS). Remarkably, microglia have an intrinsic capacity to repopulate themselves after acute ablation. However, the underlying mechanisms that drive such restoration remain elusive.

View Article and Find Full Text PDF

Located within the brain's ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common form of dementia, is characterized by the abnormal accumulation of amyloid plaques and hyperphosphorylated tau aggregates, as well as microgliosis. Hemizygous missense variants in Triggering Receptor Expressed on Myeloid Cells 2 () are associated with elevated risk for developing late-onset AD. These variants are hypothesized to result in loss of function, mimicking TREM2 haploinsufficiency.

View Article and Find Full Text PDF

Members of the conserved ubiquilin (UBQLN) family of ubiquitin (Ub) chaperones harbor an antipodal UBL (Ub-like)-UBA (Ub-associated) domain arrangement and participate in proteasome and autophagosome-mediated protein degradation. Mutations in a proline-rich-repeat region (PRR) of UBQLN2 cause amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD); however, neither the normal functions of the PRR nor impacts of ALS-associated mutations within it are well understood. In this study, we show that ALS mutations perturb UBQLN2 solubility and folding in a mutation-specific manner.

View Article and Find Full Text PDF

Frontotemporal dementia (FTD) is the second most common dementia before 65 years of age. Haploinsufficiency in the progranulin () gene accounts for 10% of all cases of familial FTD. mutation carriers have an increased risk of autoimmune disorders, accompanied by elevated levels of tissue necrosis factor (TNF) α.

View Article and Find Full Text PDF

Escherichia Coli GnsA is a regulator of phosphatidylethanolamine synthesis and functions as a suppressor of both a secG null mutation and fabA6 mutations. GnsA may also be a toxin with the cognate antitoxin YmcE. Here we report the crystal structure of GnsA to 1.

View Article and Find Full Text PDF

Pathological aggregation and mutation of the 43-kDa TAR DNA-binding protein (TDP-43) are strongly implicated in the pathogenesis amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 neurotoxicity has been extensively modeled in mice, zebrafish, Caenorhabditis elegans and Drosophila, where selective expression of TDP-43 in motoneurons led to paralysis and premature lethality. Through a genetic screen aimed to identify genetic modifiers of TDP-43, we found that the Drosophila dual leucine kinase Wallenda (Wnd) and its downstream kinases JNK and p38 influenced TDP-43 neurotoxicity.

View Article and Find Full Text PDF

The bacterial type VI secretion system (T6SS), a dynamic organelle, participates in microbial competition by transporting toxic effector molecules to neighbouring cells to kill competitors. TsiV3, a recently defined T6SS immunity protein in Vibrio cholerae, possesses self-protection against killing by T6SS predatory cells by directly binding to and inhibiting their effector protein VgrG-3. Structural information about TsiV3 could help to illuminate its specific mechanism.

View Article and Find Full Text PDF

Cytosolic aggregation of the nuclear RNA-binding protein TDP-43 is a histopathologic signature of degenerating neurons in amyotrophic lateral sclerosis (ALS), and mutations in the TARDBP gene encoding TDP-43 cause dominantly inherited forms of this condition. To understand the relationship between TDP-43 misregulation and neurotoxicity, we and others have used Drosophila as a model system, in which overexpression of either wild-type TDP-43 or its ALS-associated mutants in neurons is sufficient to induce neurotoxicity, paralysis, and early death. Using microarrays, we have examined gene expression patterns that accompany TDP-43-induced neurotoxicity in the fly system.

View Article and Find Full Text PDF

Cytosolic aggregation of the nuclear RNA-binding protein (RBP) TDP-43 (43 kDa TAR DNA-binding domain protein) is a suspected direct or indirect cause of motor neuron deterioration in amyotrophic lateral sclerosis (ALS). In this study, we implemented a high-content, genome-wide RNAi screen to identify pathways controlling TDP-43 nucleocytoplasmic shuttling. We identified ∼60 genes whose silencing increased the cytosolic localization of TDP-43, including nuclear pore complex components and regulators of G2/M cell cycle transition.

View Article and Find Full Text PDF

The mammalian circadian clock component PERIOD2 (PER2) plays a critical role in circadian rhythm entrainment. Recently, a missense mutation at a putative phosphorylation site in hPER2, Ser-662, was identified in patients that suffer from familial advanced sleep phase syndrome (FASPS). Patients with FASPS display abnormal sleep-wake patterns characterized by a lifelong pattern of sleep onset in the early evening and offset in the early morning.

View Article and Find Full Text PDF

Activating transcription factor 1 (ATF1) and the closely related proteins CREB (cyclic AMP resonse element binding protein) and CREM (cyclic AMP response element modulator) constitute a subfamily of bZIP transcription factors that play critical roles in the regulation of cellular growth, metabolism, and survival. Previous studies demonstrated that CREB is phosphorylated on a cluster of conserved Ser residues, including Ser-111 and Ser-121, in response to DNA damage through the coordinated actions of the ataxia-telangiectasia-mutated (ATM) protein kinase and casein kinases 1 and 2 (CK1/2). Here, we show that DNA damage-induced phosphorylation by ATM is a general feature of CREB and ATF1.

View Article and Find Full Text PDF
Article Synopsis
  • HMGA proteins are usually absent in normal human cells but are abundant in embryonic stem cells and many cancers, with HMGA levels linked to tumor severity and prognosis.
  • This study reveals that HMGA1a/b and HMGA2 have the ability to cleave DNA, aiding cancer cells in resisting DNA damage from base excision repair (BER) processes.
  • The research highlights HMGA2's unexpected role in DNA repair mechanisms within cancer cells, suggesting it could be significant for future cancer diagnosis and treatment strategies.
View Article and Find Full Text PDF