Publications by authors named "Lihong Xia"

The CuO/reduced graphene oxide foam (CuO/RGF) with excellent recyclability was prepared via hydrothermal method followed by freeze drying treatment for bisphenol A (BPA) removal via activating peroxydisulfate (PDS). SEM, XRD, XPS, FT-IR, BET, and TG techniques were used to investigate the structure and property of CuO/RGF. The effect of degradation conditions (pH, PDS amount, Cl, HCO, HA and FA) on BPA removal by CuO/RGF were investigated.

View Article and Find Full Text PDF

To reduce or eliminate the inhibition effect of natural organic matters (NOMs) in water on TiO photocatalysis for removal of emerging contaminants, four activated carbon/titanium dioxide (AC/TiO) composites with different pore structure were prepared by hydrothermal method. The results showed that anatase TiO particles were uniformly distributed in the pores or onto the surface of activated carbons. The total removal rate of 6 mg L 17α-ethinylestradiol (EE2) on the four AC/TiO composites reached above 90%, 30% higher than that of EE2 on TiO.

View Article and Find Full Text PDF

Left ventricular noncompaction (LVNC) is a type of cardiomyopathy characterized anatomically by prominent ventricular trabeculation and deep intertrabecular recesses. The mortality associated with LVNC ranges from 5% to 47%. The etiology of LVNC is yet to be fully understood, although decades have passed since its recognition as a clinical entity globally.

View Article and Find Full Text PDF

In this work, braided carbon fiber reinforced carbon matrix composites (3D-C/C composites) are prepared by chemical vapor infiltration process. Their composite structure, mechanical properties, biocompatibility, and in vivo experiments are investigated and compared with those of traditional 2.5D-C/C composites and titanium alloys TC4.

View Article and Find Full Text PDF

In this work, we used TiO nanobelts and P25 particles as titanium sources to combine with β-BiO to form β-BiO/TiO and β-BiO/P25 composites. The prepared samples were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and UV-vis absorbance spectroscopy and fluorescence spectroscopy. The structure and performance of two composites were comparatively investigated, and the β-BiO molar ratios in them were optimized and their roles in them were studied.

View Article and Find Full Text PDF

In this work, TiO (B) nano-belts were synthesized by hydrothermal method under stirring, and static conditions and preparation conditions were optimized. The prepared materials were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), photoluminescence spectroscopy (PL), and N adsorption/desorption measurement. The photocatalytic performance was evaluated by removing synthetic estrogen 17α-ethynylestradiol (EE2), which is the most potent endocrine-disrupting chemical.

View Article and Find Full Text PDF

Background: Previous study has detected the expression of miR-625 in esophageal squamous cell carcinoma (ESCC) and found that miR-625 was related to tumor depth, stage, and metastasis of ESCC. However, the prognostic value of miR-625 in ESCC has not yet been reported.

Methods: Real-time quantitative PCR was employed to measure the expression level of miR-625 in clinical ESCC tissues.

View Article and Find Full Text PDF

Introduction: Lung cancer is extremely harmful to human health and has one of the highest worldwide incidences of all malignant tumors. Approximately 80% of lung cancers are classified as non-small cell lung cancers (NSCLCs). Cisplatin-based multidrug chemotherapy regimen is standard for such lesions, but drug resistance is an increasing problem.

View Article and Find Full Text PDF

Drug resistance greatly reduces the efficacy of doxorubicin-based chemotherapy in bladder cancer treatment; however, the underlying mechanisms are poorly understood. We aimed to investigate whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation, exerts synergistic cytotoxicity with doxorubicin in bladder cancer, and whether eIF5A2 is involved in chemoresistance to doxorubicin-based bladder cancer treatment. BIU-87, J82, and UM-UC-3 bladder cancer cells were transfected with eIF5A2 siRNA or negative control siRNA before incubation with doxorubicin alone or doxorubicin plus GC7 for 48 h.

View Article and Find Full Text PDF