Background: To construct prognostic model of colorectal cancer (CRC) recurrence and metastasis (R&M) with traditional Chinese medicine (TCM) factors based on different machine learning (ML) methods. Aiming to offset the defects in the existing model lacking TCM factors.
Methods: Patients with stage I-III CRC after radical resection were included as the model data set.
Purpose: The present study aimed to develop prognostic prediction models based on machine learning (ML) for non-metastatic colon cancer (CRC), which can provide a precise quantitative risk assessment and serve as an assistive method for treatment strategy development. The possibility of improving prediction accuracy using nonlinear methods compared to linear methods was investigated.
Patients And Methods: A cancer-specific survival (CSS) model constructed using logistic regression, extreme gradient boosting (XGBoost), and random forest algorithms was trained on the Surveillance, Epidemiology, and End Results datasets for 15,254 patients with non-metastatic CRC (split into training [70%] and internal validation [30%] datasets) and externally validated with an outpatient cohort of 311 cases from Xiyuan Hospital in China.