Publications by authors named "Liguo Wei"

Background: We investigated the consistency and accuracy of the Index of Consciousness (IoC) and the Bispectral Index (BIS) in monitoring the sedative effect of ciprofol during the induction of general anesthesia. There is extensive literature that reports good consistency and correlations between the IoC1 and the BIS in reflecting the sedation levels induced by propofol and sevoflurane but not by ciprofol.

Objective: The aim was to compare the consistency and accuracy of the IoC and BIS in monitoring the sedative effect of ciprofol during the induction of general anesthesia.

View Article and Find Full Text PDF

Electrochemical water splitting is considered a green and sustainable method of producing hydrogen energy. Herein, to pursue a highly efficient hydrogen evolution reaction, we fabricated high-performance electrocatalysts, by utilizing a bimetallic (Cu and Co) metal-organic framework to modify rGO through a one-step approach. The synthesized CuCoOC@rGO presents a highly ordered structure with a defect-rich porous surface for the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

The natural starch (NS) is modified by an esterification process which is accomplished by reacting the NS and phosphate together with urea via a facile alcohol solvothermal method. After modification, a series of obvious variations can be easily confirmed for the resulted starch phosphate carbamides (denoted as SPC) compared with that of NS, such as the introduction of new groups of CO, PO, P-O-C and P-O-H together with new elements of N and P in starch molecular structure unit confirmed in FT-IR and XPS analyses and the decreased crystallinity along with formed surface defect demonstrated in XRD and SEM measurements. Furthermore, the formed SPC has a higher viscosity of 480 mPa.

View Article and Find Full Text PDF

In this paper, CoNi bimetallic nanoparticle decorated reduced graphene oxide (CoNi-RGO) was synthesized by a facile hydrothermal method. When applied this CoNi-RGO into counter electrode for dye-sensitized solar cells (DSSCs), it shows smaller charge-transfer resistance and better electrocatalytic activity than that of pure reduced graphene oxide (RGO). At the optimized conditions, the energy conversion efficiency of DSSCs based on CoNi-RGO counter electrode was 3.

View Article and Find Full Text PDF

An efficient counter electrode material for dye sensitized solar cells (DSSCs) was synthesized by pyrolysis of melamine and graphene oxide. The synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electrode microscopy, which show that nitrogen doped reduced graphene oxide (NRGO) was obtained by this synthesis method. In the synthesized NRGO, graphitic structure was kept and the nitrogen was existence as pyrrolic, pyridinic, graphitic, and oxidized nitrogen species in the samples.

View Article and Find Full Text PDF

Graphene has attracted a lot of attention because of its unique mechanical, thermal, electrical and optical properties. In this study, a double layered structured photoanode consisting of a graphene/TiO2 composite layer and a TiO2 nanoparticles (P25) underlayer was developed. The photoelectric properties of as-prepared double layer structured photoanode were studied with comparison of the anatase TiO2 photoanode.

View Article and Find Full Text PDF

A series of Zn(ii) complexes with different conjugated systems, [ZnL1Cl] (Zn1), [ZnL2Cl] (Zn2), [Zn(L3)]·(ClO) (Zn3), [ZnL4Cl] (Zn4), and [ZnL5Cl] (Zn5), were synthesized and subsequently characterized via single crystal X-ray diffraction, H and C NMR, FT-IR, elemental analyses, melting point, and PXRD. The X-ray diffraction analyses revealed that the supramolecular frameworks of complexes Zn1-Zn5 are constructed by C-HO/Cl hydrogen bonds and ππ interactions. Complexes Zn1-Zn3 feature 3D 6-connected {4·6} topological structures, whereas complex Zn4 exhibits a 3D 7-connected supramolecular framework with a {4·6} topological structure.

View Article and Find Full Text PDF

Planar heterojunction perovskite solar cells (PHJ-PSCs) constructed with one-step precursor solution spin-coating deposition (OPSSD) usually give an extremely low performance mainly due to the poor morphology and low crystallinity of the perovskite films. In this work, by incorporating a suitable HONHCl additive in the perovskite precursor solution, a high quality perovskite film with improved morphology and crystallinity was obtained. The UV-vis measurement of the CHNHI solutions without and with HONHCl demonstrates that the improved quality of the perovskite film can be easily attributed to a combined effect of N, I, HO and CHNHCl originating from the oxidation of CHNHI triggered by the HONHCl additive, which can manipulate the crystallization process of the perovskite.

View Article and Find Full Text PDF

Using Schiff-base ligands (E)-N-(6-methoxypyridin-2-yl)(CH═NAr) (where Ar = C6H5, L1; 2-MeC6H4, L2; 2,4,6-Me3C6H2, L3), six Zn(II)/Hg(II) complexes, namely, [ZnL1Cl2] (Zn1), [HgL1Cl2] (Hg1), [ZnL2Cl2] (Zn2), [HgL2Cl2] (Hg2), [ZnL3Cl2] (Zn3), and [HgL3Cl2] (Hg3) have been synthesized under solvothermal conditions. The structures of six complexes have been established by X-ray single-crystal analysis and further physically characterized by EA, FT-IR, (1)H NMR, and ESI-MS. The crystal structures of these complexes indicate that noncovalent interactions, such as hydrogen bonds, C-H···Cl, and π···π stacking, play essential roles in constructing the resulting supramolecular structures (1D for Hg3; 2D for Zn2, Hg2; 3D for Zn1, Hg1, and Zn3).

View Article and Find Full Text PDF

A novel polydentate Schiff base ligand N(1),N(3)-bis[(6-methoxypyridin-2-yl)methylene]benzene-1,3-diamine (L) and its two dinuclear sandwich-like complexes {[CdL(NO3)(H2O)]·NO3}2 (1) and {[CdL(CH3CN)(H2O)]·(ClO4)2·(CH3CN)2}2 (2) were synthesized. Both C-H∙∙∙O, C-H∙∙∙N and π-π non-covalent interactions had essential roles in constructing the resulting three-dimensional supramolecular networks. L emits a more intense blue-green fluorescence emission around 493 nm than in dilute solution, exhibiting stacking-induced emission properties.

View Article and Find Full Text PDF

Hydrogenated titanium dioxide (H-TiO2) nanocrystals were successfully prepared via annealing TiO2 in H2/N2 mixed gas flow at elevated temperatures ranging from 300 to 600 °C. Electron paramagnetic resonance (EPR) spectra were used to determine the produced oxygen vacancy in H-TiO2. Variations in temperature were studied to investigate the concentration change of oxygen vacancy in H-TiO2.

View Article and Find Full Text PDF

Nine IIB group complexes, [ZnL1Cl2] (Zn1), [CdL1Cl2]2 (Cd1), [HgL1Cl2] (Hg1), [ZnL2Cl2] (Zn2), [CdL2Cl2] (Cd2), [HgL2Cl2] (Hg2), [ZnL3Cl2] (Zn3), [CdL3Cl2] (Cd3) and [HgL3Cl2] (Hg3), have been synthesized from the corresponding ortho-(6-methoxy-pyridyl)(CH[double bond, length as m-dash]NAr) (where Ar = 2,6-iPr2C6H3, L1; 4-MeC6H4, L2; 2-OMeC6H4, L3) Schiff base and structurally characterized by elemental analysis, FT-IR, (1)H NMR and X-ray single-crystal analysis. Crystallographic studies reveal that the center metal of the complexes adopts a distorted tetrahedron geometry (except for Cd1 and Cd3, which display square pyramidal geometry) and C-HCl hydrogen bonds and ππ stacking interactions contribute to three-dimensional supramolecular structures. The series of complexes exhibit tunable luminescence from blue, through green, to light yellow by varying the temperature (298 K and 77 K), both in solution and in the solid state.

View Article and Find Full Text PDF

2,6-Bis[1-(phenylimino)ethyl]pyridine (M0) and its derivatives containing methyl groups on their phenyl rings (M1o, M1p and M2) are employed as co-sensitizers in dye-sensitized solar cells (DSSCs). The prepared co-sensitizers could alleviate the aggregation of ruthenium dye N719 on the TiO2 film, enhance the spectral responses of the co-sensitized TiO2 film in the region from 400 to 750 nm, suppress the electron recombination, prolong the electron lifetime and decrease the total resistance of DSSCs. The number and position of the methyl groups are two key factors that play important roles in the performances of DSSCs.

View Article and Find Full Text PDF

New near-infrared (NIR)-to-green upconversion nanoparticles of Ho(3+)-Yb(3+)-F(-) tridoped TiO2 (UC-F-TiO2) were designed and fabricated via the hydrosol-hydrothermal method. Under 980 nm NIR excitation, UC-F-TiO2 emit strong green upconversion fluorescence with three emission bands at 543, 644, and 751 nm and convert the NIR light in situ to the dye-sensitive visible light that could effectively reduce the distance between upconversion materials and sensitizers; thus, they minimize the loss of the converted light. Our results show that this UC-F-TiO2 offers excellent opportunities for the other types of solar cells applications, such as organic solar cells, c-Si solar cells, multijunction solar cells, and so on.

View Article and Find Full Text PDF

N,N'-Bis((6-methoxylpyridin-2-yl)methylene)-p-phenylenediimine based four-coordinated d(10) transition metal complexes (named ML, M = Zn, Cd, Hg) were synthesized and employed as co-sensitizers and co-adsorbents in combination with a ruthenium complex N719 in dye sensitized solar cells. After co-sensitization, not only the incident-photon-to-current conversion efficiency is enhanced but also the dark current is reduced. A short circuit current density of 14.

View Article and Find Full Text PDF

Purpose: Propofol is widely used in sedation and surgical procedures involving patients with acute lung injury (ALI), a common complication in critically ill patients. Monocyte chemoattractant protein-1 (MCP-1) plays an important role in pathological changes in ALI. The present study investigated the anti-inflammatory effect and mechanism of propofol on MCP-1 production and mitogen-activated protein kinase (MAPK) phosphorylation induced by lipopolysaccharide (LPS) in alveolar epithelial cells (AECs).

View Article and Find Full Text PDF