Publications by authors named "Liguo Niu"

Dendritic cells (DC) are a promising cell type for cancer vaccines due to their high immunostimulatory capacity. However, improper maturation of DC prior to treatment may account for the limited efficacy of DC vaccine clinical trials. Latent Membrane Protein-1 (LMP1) of Epstein-Barr virus was examined for its ability to mature and activate DC as a gene-based molecular adjuvant for DC vaccines.

View Article and Find Full Text PDF

Background/aim: Interleukin-2 (IL2) transgenic Ewing sarcoma cells reduce tumor growth in vivo and in vitro. In the present study we analyzed the expression of immune suppressive indoleamine-2,3-dioxygenase (IDO) in this model.

Materials And Methods: Expression of IDO was analyzed by polymerase chain reaction.

View Article and Find Full Text PDF

Background: Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection.

View Article and Find Full Text PDF

HIV-1 does not significantly activate cellular immunity, which has made it difficult to use attenuated forms of HIV-1 as a vaccine. In contrast, EBV induces robust T cell responses in most infected individuals, perhaps as this virus contains LMP1, a viral mimic of CD40, which is a key activating molecule for DCs and macrophages. Consequently, studies were conducted using LMP1 and LMP1-CD40, a related construct formed by replacing the intracellular signaling domain of LMP1 with that of CD40.

View Article and Find Full Text PDF

Background: Dendritic cell (DC) therapy is a promising technology for the treatment of HIV infected individuals. HIV-1 Gag- and Nef RNA-loaded DC have previously been shown to induce immune responses ex vivo following coculture with autologous lymphocytes. However, polyfunctionality and memory responses following coculture have not been evaluated.

View Article and Find Full Text PDF

Agonistic anti-CD137 mAbs either positively or negatively regulate T cell function. When administered at the beginning of lymphocytic choriomeningitis virus Armstrong infection anti-CD137 induced immunosuppression and T cell deletion, and in the case of influenza infection led to increased mortality. In contrast, 72 h delay in anti-CD137 treatment led to an enhanced virus-specific CD8 T cell response and rapid viral clearance.

View Article and Find Full Text PDF

CD137 is expressed on activated T cells and ligands to this costimulatory molecule have clinical potential for amplifying CD8 T cell immunity to tumors and viruses, while suppressing CD4 autoimmune T cell responses. To understand the basis for this dichotomy in T cell function, CD4 and CD8 antiviral immunity was measured in lymphocytic choriomeningitis virus (LCMV) Armstrong- or A/PR8/34 influenza-infected mice injected with anti-CD137 mAbs. We found that the timing of administration of anti-CD137 mAbs profoundly altered the nature of the antiviral immune response during acute infection.

View Article and Find Full Text PDF

CD137-mediated signals costimulate T cells and protect them from activation-induced apoptosis; they induce curative antitumor immunity and enhance antiviral immune responses in mice. In contrast, anti-CD137 agonistic mAbs can suppress T-dependent humoral immunity and reverse the course of established autoimmune disease. These results have provided a rationale for assessing the therapeutic potential of CD137 ligands in human clinical trials.

View Article and Find Full Text PDF

CD137 (4-1BB), is an inducible T-cell costimulatory receptor and a member of the tumor necrosis factor receptor (TNFR) superfamily. It is expressed on activated T cells and activated natural killer (NK) cells, but is constitutively expressed on a population of splenic dendritic cells (DCs). The natural counter receptor for CD137 is 4-1BB ligand, a member of the TNF superfamily that is weakly expressed on naïve or resting B cells, macrophages, and DCs.

View Article and Find Full Text PDF