Publications by authors named "Ligresti A"

Cannabinoid receptor subtype 2 (CB2R) is emerging as a pivotal biomarker to identify the first steps of inflammation-based diseases such as cancer and neurodegeneration. There is an urgent need to find specific probes that may result in green and safe alternatives to the commonly used radiative technologies, to deepen the knowledge of the CB2R pathways impacting the onset of the above-mentioned pathologies. Therefore, based on one of the CB2R pharmacophores, we developed a class of fluorescent -adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives spanning from the green to the near-infrared (NIR) regions of the light spectrum.

View Article and Find Full Text PDF

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation.

View Article and Find Full Text PDF

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)--, (±)--, and (±)--) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-, (±)-, and (±)-. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. was identified as selective for MAGL when compared with other serine hydrolases.

View Article and Find Full Text PDF

Cannabinoid CB receptor (CBR) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CBR might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated.

View Article and Find Full Text PDF

Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in vitro and to have anti-osteoarthritic activity in vivo. In this article, we report the synthesis, pharmacological profile, and molecular modeling of a series of twenty-three new 7-hydroxy-5-oxopyrazolo[4,3-]pyridine-6-carboxamides with the aim of further developing this new class of selective CB2 ligands.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties.

View Article and Find Full Text PDF
Article Synopsis
  • Multicomponent reactions (MCRs) are a key method in synthetic organic chemistry, utilized for their ability to combine three or more substrates to create complex products efficiently.
  • MCRs are gaining popularity in medicinal chemistry for drug discovery because they offer sustainable, cost-effective, and rapid synthesis of biologically active compounds.
  • The review highlights recent literature that showcases various MCR approaches and their applications in developing new anticancer drugs.
View Article and Find Full Text PDF

Prostate cancer (PCa) is a leading cause of death in the male population commonly treated with androgen deprivation therapy that often relapses as androgen-independent and aggressive castration-resistant prostate cancer (CRPC). Ferroptosis is a recently described form of cell death that requires abundant cytosolic labile iron to promote membrane lipid peroxidation and which can be induced by agents that inhibit the glutathione peroxidase-4 activity such as RSL3. Exploiting in vitro and in vivo human and murine PCa models and the multistage transgenic TRAMP model of PCa we show that RSL3 induces ferroptosis in PCa cells and demonstrate for the first time that iron supplementation significantly increases the effect of RSL3 triggering lipid peroxidation, enhanced intracellular stress and leading to cancer cell death.

View Article and Find Full Text PDF

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood.

View Article and Find Full Text PDF

Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach.

View Article and Find Full Text PDF

Cannabinoid type 2 receptor (CB2R), belonging to the endocannabinoid system, is overexpressed in pathologies characterized by inflammation, and its activation counteracts inflammatory states. Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of the main endocannabinoid anandamide; thus, the simultaneous CB2R activation and FAAH inhibition may be a synergistic anti-inflammatory strategy. Encouraged by principal component analysis (PCA) data identifying a wide chemical space shared by CB2R and FAAH ligands, we designed a small library of adamantyl-benzamides, as potential dual agents, CB2R agonists, and FAAH inhibitors.

View Article and Find Full Text PDF

Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a leading cause of cancer mortality in the male population commonly treated with androgen deprivation therapy (ADT) and relapsing as aggressive and androgen-independent castration-resistant prostate cancer (CRPC). In PCa the FGF/FGFR family of growth factors and receptors represents a relevant mediator of cancer growth, tumor-stroma interaction, and a driver of resistance and relapse to ADT. In the present work, we validate the therapeutic efficacy the FDA-approved FGFR inhibitor pemigatinib, in an integrated platform consisting of human and murine PCa cells, and the transgenic multistage TRAMP model of PCa that recapitulates both androgen-dependent and CRPC settings.

View Article and Find Full Text PDF

The endocannabinoids 2-arachidonoyl-glycerol and -arachidonoyl-ethanolamine are lipids regulating many physiological processes, notably inflammation. Endocannabinoid hydrolysis inhibitors are now being investigated as potential anti-inflammatory agents. In addition to 2-arachidonoyl-glycerol and -arachidonoyl-ethanolamine, the endocannabinoidome also includes other monoacylglycerols and -acyl-ethanolamines such as 1-linoleoyl-glycerol (1-LG) and -linoleoyl-ethanolamine (LEA).

View Article and Find Full Text PDF

In continuing our investigation on the chemical diversity of Algerian plants, we examined , whose chemical composition has been poorly studied. The present work was aimed at characterizing the secondary metabolite pattern of the CHCl extract of the aerial parts of this plant that displayed antiproliferative properties in a preliminary screening on HeLa cell line. The chemical analysis led us to characterize the bioactive oxygenated terpenoid fraction which includes, within major known metabolites, two new minor sesquiterpene lactones, centaurolide-A () and centaurolide-B ().

View Article and Find Full Text PDF

In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer's disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets.

View Article and Find Full Text PDF

Bone is a highly complex and metabolically active tissue undergoing a continuous remodeling process, which endures throughout life. A complex cell-signaling system that plays role in regulating different physiological processes, including bone remodeling, is the endocannabinoid system (ECS). Bone mass expresses CB1 and CB2 cannabinoid receptors and enzymatic machinery responsible for the metabolism of their endogenous ligands, endocannabinoids (AEA and 2-AG).

View Article and Find Full Text PDF

N-Arachidonoyl-ethanolamine (AEA) is an endocannabinoid (eCB) and endogenous lipid mimicking many of the effects of Δ-tetrahydrocannabinol, notably on brain functions, appetite, pain and inflammation. The eCBs and eCB-like compounds contain fatty acids, the main classes being the monoacylglycerols and the N-acyl-ethanolamines (NAEs). Thus, each long chain fatty acid likely exists under the form of a monoacylglycerol and NAE, as it is the case for arachidonic acid (AA) and linoleic acid (LA).

View Article and Find Full Text PDF

A simple synthesis of the major oxidized metabolites in mammalian tissues of (-)-Δ-tetrahydrocannabivarin (THCV) () has been accomplished by kinetic studies of allylic oxidation using SeO on botanically derived THCV with the aim to yield primary and secondary allylic alcohols concurrently. This synthetic approach led to the preparation of numerous THCV derivatives, including two new compounds, 8α-hydroxy-Δ-tetrahydrocannabivarin () and 8β-hydroxy-Δ-tetrahydrocannabivarin (), and the known compounds 11-hydroxy-Δ-tetrahydrocannabivarin () and Δ-tetrahydrocannabivarin-11-oic acid (), without affecting the C-10a stereogenic center in the natural precursor and without formation of tricyclic dibenzopyran derivatives. This simple synthetic methodology could be useful to investigate the pharmacological role of THCV metabolites at, among others, the endocannabinoid CB1 and CB2 receptors for which THCV reportedly acts as respectively a neutral antagonist and partial agonist.

View Article and Find Full Text PDF

The hallmark of joint diseases, such as osteoarthritis (OA), is pain, originating from both inflammatory and neuropathic components, and compounds able to modulate the signal transduction pathways of the cannabinoid type-2 receptor (CB2R) can represent a helpful option in the treatment of OA. In this perspective, a set of 18 cannabinoid type-2 receptor (CB2R) ligands was developed based on an unprecedented structure. With the aim of improving the physicochemical properties of previously reported 4-hydroxy-2-quinolone-3-carboxamides, a structural optimization program led to the discovery of isosteric 7-hydroxy-5-oxopyrazolo[4,3-]pyridine-6-carboxamide derivatives.

View Article and Find Full Text PDF

Focusing on the importance of the free phenolic hydroxyl moiety, a family of 23 alkylresorcinol-based compounds were developed and evaluated for their cannabinoid receptor binding properties. The non-symmetrical hexylresorcinol derivative 29 turned out to be a CB2-selective competitive antagonist/inverse agonist endowed with good potency. Both the olivetol- and 5-(2-methyloctan-2-yl)resorcinol-based derivatives 23 and 24 exhibited a significant antinociceptive activity.

View Article and Find Full Text PDF

Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance.

View Article and Find Full Text PDF