Publications by authors named "Ligong Zou"

Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations.

View Article and Find Full Text PDF

Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on , a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater.

View Article and Find Full Text PDF

In the intricate realm of aquatic ecosystems, biotic interactions play pivotal roles in shaping the physiological responses and survival strategies of microorganisms. This study investigates the effects of Gracilaria bailinae on photosynthesis and metabolism on the diatom Phaeodactylum tricornutum and the ecological significance. Our results reveal considerable suppression by G.

View Article and Find Full Text PDF

Tris (1-chloro-2-propyl) phosphoric acid (TCPP), a widely used organophosphate flame retardant, has been detected in various aquatic environments due to its extensive industrial application. TCPP is well-known to negatively impact large aquatic organisms. However, the effects of TCPP on zooplankton remain poorly understood.

View Article and Find Full Text PDF

Seaweed debris is susceptible to being buried in sediments due to natural environmental changes and human activities. So far, the effect of buried seaweeds on the environment and its decomposition mechanism remains unclear. This study simulated the decomposition of seaweed Gracilariopsis lemaneiformis for 180 days with different burial depths (0 cm and 10 cm) and burial weights (10 g and 20 g).

View Article and Find Full Text PDF

Species delimitation based on lineage definition has become increasingly popular. However, these methods have been limited, especially for species that lack genomic data and are morphologically similar. The trickiest part for the species identification is that the interspecific and intraspecific boundaries are vague.

View Article and Find Full Text PDF
Article Synopsis
  • Diuron is a herbicide used in farming to help crops grow, but it can harm the environment, especially in water.
  • The study looked at how Diuron affects a tiny creature called Alexandrium pacificum, which can cause harmful algae blooms.
  • The results showed that Alexandrium can break down Diuron and reduce harmful toxins, even though it also hurts the algae's ability to grow and photosynthesize.
View Article and Find Full Text PDF

Extensive application of organophosphorus pesticides such as phenthoate results in its abundance in ecosystems, particularly in waterbodies, thereby providing the impetus to assess its role in aquatic organisms. However, the impact of phenthoate on marine algal physiological and proteomic response is yet to be explored despite its biological significance. In this study, we thus ought to investigate the impact of phenthoate in the marine dinoflagellate Prorocentrum lima, which is known for synthesizing okadaic acid (OA), the toxin responsible for diarrhetic shellfish poisoning (DSP).

View Article and Find Full Text PDF

Burgeoning commercial applications of catechol have led to its excessive accumulation in the environment, thereby posing a severe ecological threat. Bioremediation has emerged as a promising solution. The potential of the microalga to degrade catechol and use the byproduct as a carbon source was investigated in this study.

View Article and Find Full Text PDF

There has been growing interest in using microalgae as production hosts for a wide range of value-added compounds. However, microalgal genetic improvement is impeded by lack of genetic tools to concurrently control multiple genes. Here, we identified two novel strong promoters, designated Pt202 and Pt667, and delineated their potential role on simultaneously driving the expression of key lipogenic genes in Phaeodactylum tricornutum.

View Article and Find Full Text PDF

Commercialization of algal lipids and biofuels is still impractical owing to the unavailability of lipogenic strains and lack of economically viable oil extraction strategies. Because lipogenesis is governed by multiple factors, success in generating industrial-suitable algal strains using conventional strategies has been limited. We report the discovery of a novel bZIP1 transcription factor, NobZIP1, whose overexpression results in a remarkable elevation of lipid accumulation and lipid secretion in a model microalga , without impairing other physiological properties.

View Article and Find Full Text PDF

Background: Microalgal metabolic engineering holds great promise for the overproduction of a wide range of commercial bioproducts. It demands simultaneous manipulation of multiple metabolic nodes. However, high-efficiency promoters have been lacking.

View Article and Find Full Text PDF