Braz J Microbiol
March 2022
The use of inoculants carrying diazotrophic and other plant growth-promoting bacteria plays an essential role in the Brazilian agriculture, with a growing use of microorganism-based bioproducts. However, in the last few years, some farmers have multiplied microorganisms in the farm, known as "on farm" production, including inoculants of Bradyrhizobium spp. for soybean (Glycine max L.
View Article and Find Full Text PDFBradyrhizobium embrapense CNPSo 2833 is a nitrogen-fixing symbiont of the legume pasture Desmodium. Its draft genome contains 8,267,832bp and 7876 CDSs. The symbiotic island includes nodulation and nitrogen fixation genes resembling the operon organization of B.
View Article and Find Full Text PDFParaburkholderia nodosa CNPSo 1341 is a N-fixing symbiont of Phaseolus vulgaris isolated from an undisturbed soil of the Brazilian Cerrado. Its draft genome contains 8,614,032 bp and 8,068 coding sequences (CDSs). Nodulation and N-fixation genes were clustered in the genome that also contains several genes of secretion systems and quorum sensing.
View Article and Find Full Text PDFBradyrhizobium stylosanthis BR 446(T) is a nitrogen-fixing symbiont of the tropical legume pasture Stylosanthes guianensis Its draft genome contains 8,801,717 bp and 8,239 coding sequences (CDSs). Several putative genes that might confer high competitiveness and saprophytic capacity under the stressful conditions of tropical soils were identified in the genome.
View Article and Find Full Text PDFCNPSo 1112(T) is a nitrogen-fixing symbiont of perennial soybean, a tropical legume forage. Its draft genome indicates a large genome with a circular chromosome and 9,554 coding sequences (CDSs). Operons of nodulation, nitrogen fixation, and uptake hydrogenase were present in the symbiotic island, and the genome encompasses several CDSs of stress tolerance.
View Article and Find Full Text PDFGenome Announc
September 2015
Rhizobium ecuadorense CNPSo 671(T) was isolated from a common bean nodule in Ecuador. The draft genome brings novelty about indigenous rhizobial species in centers of genetic diversity of the legume.
View Article and Find Full Text PDFBradyrhizobium pachyrhizi PAC48(T) has been isolated from a jicama nodule in Costa Rica. The draft genome indicates high similarity with that of Bradyrhizobium elkanii. Several coding sequences (CDSs) of the stress response might help in survival in the tropics.
View Article and Find Full Text PDFStudies on the effects of transgenes in soybean [Glycine max (L.) Merr.] and the associated use of specific herbicides on biological nitrogen fixation (BNF) are still few, although it is important to ensure minimal impacts on benefits provided by the root-nodule symbiosis.
View Article and Find Full Text PDFBMC Genomics
December 2012
Background: Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa.
View Article and Find Full Text PDFThe genome sequences of Burkholderia sp. strains CCGE1002 from Mexico and H160 from Brazil, isolated from legume nodules, are reported. Their gene contents in relation to plant-microbe interactions and xenobiotic degradation are discussed.
View Article and Find Full Text PDF