Publications by authors named "Ligeti E"

ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow.

View Article and Find Full Text PDF

Early initiated adequate antibiotic treatment is essential in intensive care. Shortening the length of antibiotic susceptibility testing (AST) can accelerate clinical decision-making. Our objective was to develop a simple flow cytometry (FC)-based AST that produces reliable results within a few hours.

View Article and Find Full Text PDF

Depending on the prevailing environmental conditions, neutrophilic granulocytes release extracellular vesicles (EV) which have either anti-inflammatory effects on other neutrophils or pro-inflammatory and antibacterial effects. In the present study we investigated the molecular mechanisms underlying the biogenesis of functionally heterogenic EVs. We show that selective stimulation of Mac-1 integrin (complement receptor 3) by specific ligands initiates the generation of EVs which are able to impair bacterial growth and to induce the secretion of the pro-inflammatory cytokine IL-8 (aEV).

View Article and Find Full Text PDF

Similar to other cell types, neutrophilic granulocytes also release extracellular vesicles (EVs), mainly medium-sized microvesicles/microparticles. According to published data, authors have reached a consensus on the physical parameters (size, density) and chemical composition (surface proteins, proteomics) of neutrophil-derived EVs. In contrast, there is large diversity and even controversy in the reported functional properties.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles.

View Article and Find Full Text PDF

Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored.

View Article and Find Full Text PDF

Encountering opsonized particles by neutrophils results in phagocytosis of the particle and generation of extracellular vesicles with antibacterial property (aEV). The aim of the present study is to compare the involvement of different receptors and receptor-proximal signaling pathways in these two parallel processes. Investigating human neutrophils from peripheral blood, we show that complement receptors are decisive for both processes whereas immunoglobulin binding Fc receptors (FcR) only participate moderately in phagocytosis and pattern recognition receptors induce mild EV production but only minimal phagocytosis.

View Article and Find Full Text PDF

Production of extracellular vesicles (EVs) involved in intercellular communication is a common capacity of most cell types. Upon encountering opsonized microorganisms, neutrophilic granulocytes release EVs that compromise bacterial growth. We carried out a systematic investigation of the involvement of potential opsonin receptors in EV-generation from human and murine neutrophils.

View Article and Find Full Text PDF

Two cases of idiopathic granolomatous mastitis were diagnosed by histological examination in our Surgical Department in 2017. The idiopathic granulomatous mastitis is a rare, benign inflammatory laesion of the breast which can mimic malignancy in it's clinical appearance. We would like to draw attention to this differential diagnostic problem based on the cases of our Surgery Department.

View Article and Find Full Text PDF
Article Synopsis
  • There's been a lot of new research on tiny structures called extracellular vesicles (EVs) that cells release, which help us understand how cells work and what goes wrong in diseases.
  • Scientists have had a hard time studying these EVs because they come in different types and can be tough to separate and analyze properly.
  • The International Society for Extracellular Vesicles updated their guidelines, called MISEV2018, to help researchers share clear information about how to study EVs and ensure their findings are accurate and reliable.
View Article and Find Full Text PDF

Background: GTPase-activating proteins (GAPs) accelerate the rate of hydrolysis of GTP bound to small GTPases, thereby limiting the prevalence and concentration of the active, GTP-bound form of these proteins. The large number of potential GAPs acting on members of the Rho family of small GTPases raises the question of specificity or redundancy.

Results: In this review, we summarize experimental data obtained on the role of Rho family GAPs in neutrophils, highlight cases where more than one GAP is involved in a physiological function and show examples that GAPs can be involved not only in termination but also in initiation of cellular processes.

View Article and Find Full Text PDF

Techniques currently used for assessment of bacterial count or growth are time-consuming, offer low throughput, or they are complicated or expensive. The aim of the present work was to elaborate a new method that is able to detect the antibacterial effect of cells, subcellular particles, and soluble compounds in a fast, cost, and labor effective way. Our proposed technique is based on flow cytometry (FC) optimized for detection of small particles and on fluorescently labeled bacteria.

View Article and Find Full Text PDF

ARHGAP25 is a Rac-specific GTPase-activating protein that is expressed primarily in hematopoietic cells. The involvement of ARHGAP25 in regulating the recruitment of leukocytes to inflammatory sites was investigated in genetically modified mice. Using intravital microscopy, we show that Arhgap25 deficiency affects all steps of leukocyte recruitment with a predominant enhancement of transendothelial migration of neutrophilic granulocytes.

View Article and Find Full Text PDF

Protein phosphorylation is a central mechanism of signal transduction that both positively and negatively regulates protein function. Large-scale studies of the dynamic phosphorylation states of cell signaling systems have been applied extensively in cell lines and whole tissues to reveal critical regulatory networks, and candidate-based evaluations of phosphorylation in rare cell populations have also been informative. However, application of comprehensive profiling technologies to adult stem cell and progenitor populations has been challenging, due in large part to the scarcity of such cells in adult tissues.

View Article and Find Full Text PDF

The mitochondrial phosphate carrier (PiC) is a mitochondrial solute carrier protein, which is encoded by SLC25A3 in humans. PiC delivers phosphate, a key substrate of oxidative phosphorylation, across the inner mitochondrial membrane. This transport activity is also relevant for allowing effective mitochondrial calcium handling.

View Article and Find Full Text PDF

EVs in the microvesicle size range released during spontaneous death of human neutrophils were characterized and their properties compared with previously described EVs with antibacterial effect (aEVs, generated on specific activation) or produced spontaneously (sEVs). The 3 vesicle populations overlapped in size and in part of the constituent proteins were stained with annexin V and were impermeable to PI. However, none of them produced superoxide.

View Article and Find Full Text PDF

In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored.

View Article and Find Full Text PDF

Aim: To carry out a systematic study on the effect of different storage conditions on the number as well as the physical and functional properties of antibacterial extracellular vesicles (EVs) derived from human neutrophilic granulocytes.

Methods: Production of EVs with antibacterial properties was initiated by opsonized Zymosan A particles. The number of released fluorescent EVs was determined by flow cytometry following careful calibration.

View Article and Find Full Text PDF

Precise spatiotemporal regulation of O2(-)-generating NADPH oxidases (Nox) is a vital requirement. In the case of Nox1-3, which depend on the small GTPase Rac, acceleration of GTP hydrolysis by GTPase activating protein (GAP) could represent a feasible temporal control mechanism. Our goal was to investigate the molecular interactions between RacGAPs and phagocytic Nox2 in neutrophilic granulocytes.

View Article and Find Full Text PDF

Neutrophilic granulocytes are no longer regarded as cells involved only in the last phase of the immune response with one single-although vitally important-task: engulfing and killing of microorganisms marked by immunoglobulin or complement fragments. In recent years, it was shown that neutrophils are actively involved in initiation and organization of the adaptive immune response by releasing various cytokines, interacting with all major types of immune cells, regulating their own lifespan, and participating in the anaphylactic reaction and in several classically nonimmune functions such as hemostasis, atherogenesis, and even insulin resistance. The antibacterial effect is no longer restricted to killing and destruction of microorganisms sequestered in the phagosomal space.

View Article and Find Full Text PDF

Rho family small GTPases are involved in the spatio-temporal regulation of several physiological processes. They operate as molecular switches based on their GTP- or GDP-bound state. Their GTPase activator proteins (Rho/Rac GAPs) are able to increase the GTP hydrolysis of small GTPases, which turns them to an inactive state.

View Article and Find Full Text PDF

p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly.

View Article and Find Full Text PDF

Cell-derived vesicles represent a recently discovered mechanism for intercellular communication. We investigated their potential role in interaction of microbes with host organisms. We provide evidence that different stimuli induced isolated neutrophilic granulocytes to release microvesicles with different biologic properties.

View Article and Find Full Text PDF