A high-sensitivity plasmonic photonic crystal fiber (PCF) sensor is designed and a metal thin film is embedded for achieving surface plasmon resonance (SPR), which can detect the magnetic field and temperature simultaneously. Within the plasmonic PCF sensor, the SPR sensing is accomplished by coating both the upper sensing channel (Ch1) and the lower sensing channel (Ch2) with gold film. In addition, the temperature-sensitive medium polydimethylsiloxane (PDMS) is chosen to fill in Ch1, allowing the sensor to respond to the temperature.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common age-related neurodegenerative diseases comprising Lewy body spectrum disorders associated with cortical and subcortical Lewy body pathology. Over 30% of PD patients develop PD dementia (PDD), which describes dementia arising in the context of established idiopathic PD. Furthermore, Lewy bodies frequently accompany the amyloid plaque and neurofibrillary tangle pathology of Alzheimer's disease (AD), where they are observed in the amygdala of approximately 60% of sporadic and familial AD.
View Article and Find Full Text PDFTransplantation of differentiated neurons derived from either human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) is an emerging therapeutic strategy for various neurodegenerative diseases. One important aspect of transplantation is the accessibility to track and control the activity of the stem cells-derived neurons post-transplantation. Recently, the characteristics of organic nanoparticles (NPs) with aggregation-induced emission (AIE) have emerged as efficient cell labeling reagents, where positive outcomes were observed in long-term cancer cell tracing in vivo.
View Article and Find Full Text PDFCurative therapies or treatments reversing the progression of Parkinson's disease (PD) have attracted considerable interest in the last few decades. PD is characterized by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine levels. Current challenges include optimizing neuroprotective strategies, developing personalized drug therapy, and minimizing side effects from the long-term prescription of pharmacological drugs used to relieve short-term motor symptoms.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
October 2020
The continuing use of nonsteroidal anti-inflammatory drugs (NSAIDs) usually increases the side effects such as peptic ulcer and acute gastric lesions in the gastrointestinal tract. Cuttlebone (CB), isolated from Sepiella maindroni de Rochebrune, was reported to have antioxidant activities, but its role in the treatment of indomethacin-induced gastric lesions has not yet been confirmed. In this research, we investigate the protective effect of cuttlebone on indomethacin-related ulcers in rats and possible mechanisms.
View Article and Find Full Text PDFIncreasing evidence indicates superiority of three-dimensional (3D) in vitro cell culture systems over conventional two-dimensional (2D) monolayer cultures in mimicking native in vivo microenvironments. Tissue-engineered 3D culture models combined with stem cell technologies have advanced Alzheimer's disease (AD) pathogenesis studies. However, existing 3D neuronal models of AD overexpress mutant genes or have heterogeneities in composition, biological properties and cell differentiation stages.
View Article and Find Full Text PDFBackground: Significant developments in stem cell therapy for Parkinson's disease (PD) have already been achieved; however, methods for reliable assessment of dopamine neuron maturation in vivo are lacking. Establishing the efficacy of new cellular therapies using non-invasive methodologies will be critical for future regulatory approval and application. The current study examines the utility of neuroimaging to characterise the in vivo maturation, innervation and functional dopamine release of transplanted human embryonic stem cell-derived midbrain dopaminergic neurons (hESC-mDAs) in a preclinical model of PD.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2019
Constructing advanced anode materials with suitable operational potential and high energy density toward metal ion batteries is of significance for next-generation batteries. Carbon-coated porous SbTe nanoplates with high density and suitable operational potential, prepared by a hydrothermal and carbonization technique, manifest good electrochemical performance, including excellent rate capability, high capacities, and outstanding cycling performance. This performance can be traced to its special structure, including porous SbTe and the shell of carbon, which can provide fast charge transfer paths and maintain the structural stability for the entire material.
View Article and Find Full Text PDFThe World Health Organization has declared ZIKA virus (ZIKV) a global public health emergency, prompted by the association of ZIKV infections with severe brain abnormalities in the human fetus. ZIKV preferentially targets human neuronal precursor cells (NPCs) in both monolayer and cortical brain organoid culture systems and stunts their growth. Although ZIKV is well recognized to cause microcephaly, there is no systematic analysis to demonstrate the effect of ZIKV on central nervous system (CNS) development, including brain malformations and spinal cord dysfunction.
View Article and Find Full Text PDFObjectives: To compare the predictive ability of six anthropometric indices for identification of metabolic syndrome (MetS) and to determine their optimal cut-off points among Chinese adults.
Methods: A total of 59,029 participants were enrolled. Body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR), a body shape index (ABSI), body roundness index (BRI), and conicity index (CI) were measured.
J Tissue Eng Regen Med
September 2018
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss, impairment of other cognitive functions, and inability to perform activities of daily life. The key to understanding AD aetiology lies in the development of effective disease models, which should ideally recapitulate all aspects pertaining to the disease. A plethora of techniques including in vivo, in vitro, and in silico platforms have been utilized in developing disease models of AD over the years.
View Article and Find Full Text PDFBackground And Aims: The association between anthropometric indices of body composition and arterial stiffness is inconclusive. The objective of this study was to examine the predictive ability of two new obesity indices: a body shape index (ABSI), and a body roundness index (BRI), for the identification of arterial stiffness among Chinese adults, as well as to compare the relative strength of association between the anthropometric indices and arterial stiffness.
Methods: A total of 10,197 subjects were recruited in this cross-sectional study.
Recent reports have indicated human embryonic stem cells-derived midbrain dopamine (mDA) neurons as proper cell resources for use in Parkinson's disease (PD) therapy. Nevertheless, no detailed and systematic study has been conducted to identify which differentiation stages of mDA cells are most suitable for transplantation in PD therapy. Here, we transplanted three types of mDA cells, DA progenitors (differentiated in vitro for 16 days [D16]), immature DA neurons (D25), and DA neurons (D35), into PD mice and found that all three types of cells showed high viability and strong neuronal differentiation in vivo.
View Article and Find Full Text PDFCerebral hypoperfusion and impaired autophagy are two etiological factors that have been identified as being associated with the development of Alzheimer's disease (AD). Nevertheless, the exact relationships among these pathological processes remain unknown. To elucidate the impact of cerebral hypoperfusion in AD, we created a unilateral common carotid artery occlusion (UCCAO) model by occluding the left common carotid artery in both young and old 3xTg-AD mice.
View Article and Find Full Text PDFDuring the development, tight regulation of the expansion of neural progenitor cells (NPCs) and their differentiation into neurons is crucial for normal cortical formation and function. In this study, we demonstrate that microRNA (miR)-128 regulates the proliferation and differentiation of NPCs by repressing pericentriolar material 1 (PCM1). Specifically, overexpression of miR-128 reduced NPC proliferation but promoted NPC differentiation into neurons both in vivo and in vitro.
View Article and Find Full Text PDFNeuronal progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) are an excellent cell source for transplantation therapy due to their availability and ethical acceptability. However, the traditional method of expansion and differentiation of hESCs into NPCs in monolayer cultures requires a long time, and the cell yield is low. A microcarrier (MC) platform can improve the expansion of hESCs and increase the yield of NPCs.
View Article and Find Full Text PDFmicroRNAs (miRNAs) are small, noncoding RNA molecules that through imperfect base-pairing with complementary sequences of target mRNA molecules, typically cleave target mRNA, causing subsequent degradation or translation inhibition. Although an increasing number of studies have identified misregulated miRNAs in the neurodegenerative diseases (NDDs) Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, which suggests that alterations in the miRNA regulatory pathway could contribute to disease pathogenesis, the molecular mechanisms underlying the pathological implications of misregulated miRNA expression and the regulation of the key genes involved in NDDs remain largely unknown. In this chapter, we provide evidence of the function and regulation of miRNAs and their association with the neurological events in NDDs.
View Article and Find Full Text PDFMultiple C2 domains transmembrane protein 1 (MCTP1) contains two transmembrane regions and three C2 domains of high Ca(2+)-binding affinity. Single-nucleotide polymorphism (SNP) of human MCTP1 gene is reportedly associated with bipolar disorder, but expression and function of MCTP1 in the CNS is still largely unknown. We cloned rat MCTP1 isoforms, and studied expression of MCTP1 transcript and protein in the CNS.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are single stranded, noncoding RNA molecules that are encoded by eukaryotic nuclear DNA. miRNAs function through imperfect base-pairing with complementary sequences of target mRNA molecules, which is typically via the cleavage of target mRNA with transcriptional repression or translational degradation. An increasing number of studies identified dysregulation of miRNAs in neurodegenerative disease and suggest that alterations in the miRNA regulatory pathway could contribute to the disease pathogenesis.
View Article and Find Full Text PDFSmall intestinal hemolymphangioma is a very rare benign tumor. There was only one report of a hemolymphangioma of the pancreas invading to the duodenum until March 2011. Here we describe the first case of small intestinal hemolymphangioma with bleeding in a 57-year-old woman.
View Article and Find Full Text PDFClin Chim Acta
December 2010
Background: In March 2009, the novel 2009 influenza A (H1N1) virus was first reported in the southwestern USA and Mexico. It rapidly spread to China and worldwide. We investigated possible kidney injury in patients with the 2009 influenza A (H1N1) virus in China.
View Article and Find Full Text PDFFragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the translation of its binding RNA, thus regulate several signaling pathways.
View Article and Find Full Text PDFFragile X syndrome (FXS), caused by silencing of the Fmr1 gene, is the most common form of inherited mental retardation. Epilepsy is reported to occur in 20-25% of individuals with FXS. However, no overall increased excitability has been reported in Fmr1 knockout (KO) mice, except for increased sensitivity to auditory stimulation.
View Article and Find Full Text PDF