Front Immunol
November 2024
Urologic malignancies, characterized by their high aggressiveness and metastatic potential, pose a significant public health challenge globally. Ferroptosis, a novel mode of cell death, typically arises from intracellular iron ion overload and the accumulation of lipid peroxides. This process has been shown to play a crucial regulatory role in various pathological conditions, particularly in cancer, including urologic cancers.
View Article and Find Full Text PDFFront Cell Dev Biol
July 2024
The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers.
View Article and Find Full Text PDFUrologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers.
View Article and Find Full Text PDFNanomechanical resonators are routinely used for identification of various analytes such as biological and chemical molecules, viruses, or bacteria cells from the frequency response. This identification based on the multimode frequency shift measurement is limited to the analyte of mass that is much lighter than the resonator mass. Hence, the analyte can be modeled as a point particle and, as such, its stiffness and nontrivial binding effects such as surface stress can be neglected.
View Article and Find Full Text PDFMicro-/nanomechanical resonators are often used in material science to measure the elastic properties of ultrathin films or mass spectrometry to estimate the mass of various chemical and biological molecules. Measurements with these sensors utilize changes in the resonant frequency of the resonator exposed to an investigated quantity. Their sensitivities are, therefore, determined by the resonant frequency.
View Article and Find Full Text PDF