Publications by authors named "Lifang Zhuang"

Fluorescence in situ hybridization (FISH) using oligonucleotides is a simple and convenient method for chromosome research. In this study, 34 of 46 previously developed oligonucleotides produced signals in barley. Together with two plasmid clones and one PCR-amplified cereal centromere repeat (CCS1) probe, 37 repetitive sequences were chromosomally located produced three types of signals covering different positions on the chromosomes.

View Article and Find Full Text PDF

Background: Arachis contains 80 species that carry many beneficial genes that can be utilized in the genetic improvement of peanut (Arachis hypogaea L. 2n = 4x = 40, genome AABB). Chromosome engineering is a powerful technique by which these genes can be transferred and utilized in cultivated peanut.

View Article and Find Full Text PDF

High-resolution multiplex oligonucleotide FISH revealed the frequent occurrence of structural chromosomal rearrangements and polymorphisms in widely grown wheat cultivars and their founders. Over 2000 wheat cultivars including 19 founders were released and grown in China from 1949 to 2000. To understand the impact of breeding selection on chromosome structural variations, high-resolution karyotypes of Chinese Spring (CS) and 373 Chinese cultivars were developed and compared by FISH (fluorescence in situ hybridization) using an oligonucleotide multiplex probe based on repeat sequences.

View Article and Find Full Text PDF

Single-strand oligonucleotides (SSONs hereafter) as probes are becoming a powerful method of chromosome painting in many species. In this study, nine SSONs ((ACT), (ACT), Knob-1, Knob-2, Knob-3, CentC69-1, MR68-3, K10-72-1, and TR1-357-2) were developed and used for chromosome identification in 16 maize (Zea mays L., 2n = 20) inbred lines and hybrids by non-denaturing fluorescence in situ hybridization (ND-FISH).

View Article and Find Full Text PDF

In comparison with general FISH for preparing probes in terms of time and cost, synthesized oligonucleotide (oligo hereafter) probes for FISH have many advantages such as ease of design, synthesis, and labeling. Low cost and high sensitivity and resolution of oligo probes greatly simplify the FISH procedure as a simple, fast, and efficient method of chromosome identification. In this study, we developed new oligo and oligo multiplex probes to accurately and efficiently distinguish wheat (Triticum aestivum, 2n = 6x, AABBDD) and Thinopyrum bessarabicum (2n = 2x = 14, JJ) chromosomes.

View Article and Find Full Text PDF

Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1.

View Article and Find Full Text PDF

Gamma radiation induced a series of structural aberrations involving Thinopyrum bessarabicum chromosome 4J. The aberrations allowed for deletion mapping of 101 4J-specific markers and fine mapping of blue-grained gene BaThb. Irradiation can induce translocations and deletions to assist physically locating genes and markers on chromosomes.

View Article and Find Full Text PDF

Thinopyrum bessarabicum (2n = 2x = 14, JJ or E(b)E(b)) is an important genetic resource for wheat improvement due to its salinity tolerance and disease resistance. Development of wheat-Th. bessarabicum translocation lines will facilitate its practical utilization in wheat improvement.

View Article and Find Full Text PDF

In order to transfer the genes for salt tolerance and disease resistance from Thinopyrum bessarabicum into wheat, the hybrid progenies between T. aestivum cv. Chinese Spring and T.

View Article and Find Full Text PDF