Alfalfa ( L.) is an important forage crop worldwide, but molecular genetics and breeding research in this species are hindered by its self-incompatibility (SI). Although the mechanisms underlying SI have been extensively studied in other plant families, SI in legumes, including alfalfa, remains poorly understood.
View Article and Find Full Text PDFUnlabelled: Weed competition seriously threatens the yield of alfalfa, the most important forage legume worldwide, thus generating herbicide-resistant alfalfa varieties is becoming a necessary cost-effective strategy to assist farmers for weed control. Here, we report the co-expression of plant codon-optimized forms of () and () genes, in alfalfa, via -mediated transformation. We established that the - co-expression alfalfa lines were able to tolerate up to tenfold higher commercial usage of glyphosate and produced approximately ten times lower glyphosate residues than the conventional cultivar.
View Article and Find Full Text PDFThe MADS-box gene family is widely distributed in higher plants and the members of the angiosperm-specific APETALA1/FRUITFULL (AP1/FUL) subfamily plays important roles in the regulation of plant reproductive development. Recent studies revealed that the AP1/FUL subfamily member Dt2, VEGETATIVE1/PsFRUITFULc (VEG1/PsFULc) and MtFRUITFULc (MtFULc) are essential for the stem growth, branching and inflorescence development in legume species soybean (Glycine max), pea (Pisum sativum) and Medicago truncatula. However, the biological function of their homologue in Arabidopsis thaliana, AGAMOUS-LIKE 79 (AGL79), has not been well elucidated.
View Article and Find Full Text PDFBrowning limits the commercial value of fresh-cut lotus root slices. Melatonin has been reported to play crucial plant roles in growth and development. However, the mechanisms in repressing the browning of fresh-cut lotuses are still unclear.
View Article and Find Full Text PDFPlant height is an important agronomic trait that is closely related to biomass yield and crop production. Despite legumes comprise one of the largest monophyletic families that are second only to grasses in terms of economic and nutritional values, due to an ancient genome duplication event, most legume plants have complex genomes, thus the molecular mechanisms that determine plant height are less known in legumes. Here, we report the identification and characterization of (), which is required for the plant height in the model legume .
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
August 2021
Homeobox transcription factors are key regulators of morphogenesis and development in both animals and plants. In plants, the WUSCHEL-related homeobox (WOX) family of transcription factors function as central organizers of several developmental programs ranging from embryo patterning to meristematic stem-cell maintenance through transcriptional activation and repression mechanisms. The Medicago truncatula STENOFOLIA (STF) gene is a master regulator of leaf-blade lateral development.
View Article and Find Full Text PDFFlowering plants display a vast diversity of flowering time and inflorescence architecture, which plays an important role in determining seed yield and fruit production. However, the molecular mechanism underlying the flowering control and compound inflorescence development, especially in legumes, remain to be elucidated. Here, we reported the identification of MtFDa, an essential regulator of flowering in the model legume Medicago truncatula.
View Article and Find Full Text PDFLotus root (Nelumbo nucifera G.) is a high economic value crop in the world. In this study, the storage characteristics (color, sensory, texture, and fatty acids) of lotus root ("Elian No.
View Article and Find Full Text PDFFlowering plants display a vast diversity of inflorescence architecture, which plays an important role in determining seed yield and fruit production. Unlike the model eudicot Arabidopsis thaliana that has simple inflorescences, most legume plants have compound types of inflorescences. Recent studies in the model legume species Pisum sativum and Medicago truncatula showed that the MADS-box transcription factors VEGETATIVE1/PsFRUITFULc/MtFRUITFULc (VEG1/PsFULc and MtFULc) are essential for the development of compound inflorescences by specifying the secondary inflorescence meristem identity.
View Article and Find Full Text PDFPatterned leaf coloration in plants generates remarkable diversity in nature, but the underlying mechanisms remain largely unclear. Here, using Medicago truncatula leaf marking as a model, we show that the classic M. truncatula leaf anthocyanin spot trait depends on two R2R3 MYB paralogous regulators, RED HEART1 (RH1) and RH2.
View Article and Find Full Text PDFPlant Physiol
September 2020
Stigma exsertion is an important agricultural trait that facilitates the application of heterosis in crop breeding. Although several quantitative trait loci associated with stigma exsertion have been fine-mapped or cloned, the underlying genetic basis, particularly in legumes, remains unclear. In this study, we identified and characterized the exserted stigma mutant () in the model legume The exserted stigma phenotype of is mainly caused by physical interaction between floral organs, in which normal petal and stamen elongation are inhibited due to flower cuticle defects.
View Article and Find Full Text PDFOrgan size is a major agronomic trait that determines grain yield and biomass production in crops. However, the molecular mechanisms controlling organ size, especially in legumes, are poorly understood. Using forward genetic approaches in a Tnt1 insertion mutant population of the model legume Medicago truncatula, we identified SMALL LEAF AND BUSHY1 (SLB1), which is required for the control of organ size and lateral branching.
View Article and Find Full Text PDFCarotenoids are a group of natural tetraterpenoid pigments with indispensable roles in the plant life cycle and the human diet. Although the carotenoid biosynthetic pathway has been well characterized, the regulatory mechanisms that control carotenoid metabolism, especially in floral organs, remain poorly understood. In this study, we identified an anthocyanin-related R2R3-MYB protein, WHITE PETAL1 (WP1), that plays a critical role in regulating floral carotenoid pigmentation in Carotenoid analyses showed that the yellow petals of the wild-type contained high concentrations of carotenoids that largely consisted of esterified lutein and that disruption of function via insertion led to substantially reduced lutein accumulation.
View Article and Find Full Text PDFAngiosperms integrate a multitude of endogenous and environmental signals to control floral development, thereby ensuring reproductive success. Here, we report the identification of AGAMOUS AND TERMINAL FLOWER (AGTFL), a novel regulator of floral development in Medicago truncatula. Mutation of AGTFL led to the transformation of carpels and stamens into numerous sepals and petals and altered primary inflorescence identity.
View Article and Find Full Text PDFThe formation and maintenance of the shoot apical meristem (SAM) are critical for plant development. However, the underlying molecular mechanism of regulating meristematic cell activity is poorly understood in the model legume Medicago truncatula. Using forward genetic approaches, we identified HEADLESS (HDL), a homolog of Arabidopsis WUSCHEL, required for SAM maintenance and leaf development in M.
View Article and Find Full Text PDFThe C function gene () encodes for a MADS-box transcription factor required for floral organ identity and floral meristem (FM) determinacy in angiosperms. Unlike Arabidopsis, most legume plants possess two homologs arose by an ancient genome duplication event. Recently, two genes, and , were characterized and shown to fulfill the C function activity in the model legume .
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
October 2017
Genome editing is a novel targeted genome modification biotechnology, which could successfully mutate specific loci as well as generate gene replacement and insertion in various organisms. So far, genome editing technology has been widely applied in investigating gene function and developing valuable traits in both model plants and major crops. In this review, we briefly survey the historical development of genome editing technology, summarize recent progress using the CRISPR/Cas9 system for plant genome editing and explore the potential of the CRISPR/Cas technology in improving forage legumes.
View Article and Find Full Text PDFSci China Life Sci
December 2017
Soybean (Glycine max) is a facultative short-day plant with a sensitive photoperiod perception and reaction system, which allows it to adjust its physiological state and gene regulatory networks to seasonal and diurnal changes in environmental conditions. In the past few decades, soybean cultivation has spread from East Asia to areas throughout the world. Biologists and breeders must now confront the challenge of understanding the molecular mechanism of soybean photoperiodism and improving agronomic traits to enable this important crop to adapt to geographical and environmental changes.
View Article and Find Full Text PDFTethered bimolecular lipid membranes are solid supported membrane systems, which provide a versatile model platform for the study of many membrane related processes. Here, such an architecture has been used to study the interaction of the small synthetic antimicrobial peptide, V4, with membranes of various mixed lipid compositions, including membranes containing bacterial lipids. By investigating the binding of the peptide using a range of surface analytical techniques such as surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy as well as electrochemical impedance spectroscopy, a clear preference of the peptide for negatively charged membranes over zwitterionic ones has been shown.
View Article and Find Full Text PDFLignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release.
View Article and Find Full Text PDF