Publications by authors named "Lieven Stuyver"

Background: Manual screening of a Kato-Katz (KK) thick stool smear remains the current standard to monitor the impact of large-scale deworming programs against soil-transmitted helminths (STHs). To improve this diagnostic standard, we recently designed an artificial intelligence based digital pathology system (AI-DP) for digital image capture and analysis of KK thick smears. Preliminary results of its diagnostic performance are encouraging, and a comprehensive evaluation of this technology as a cost-efficient end-to-end diagnostic to inform STH control programs against the target product profiles (TPP) of the World Health Organisation (WHO) is the next step for validation.

View Article and Find Full Text PDF
Article Synopsis
  • A study in Ucayali, Peru examined two methods for detecting soil-transmitted helminth infections in children: the old method called Kato-Katz (KK1.0) and a new method using artificial intelligence called KK2.0.
  • The researchers analyzed stool samples from 510 kids aged 5-14 and found that KK2.0 could detect more cases of Ascaris lumbricoides compared to KK1.0, especially at the 30-minute mark.
  • The results showed that while both methods had similar detection rates for other types of infections, KK2.0 was better at finding low levels of A. lumbricoides infection in the kids.
View Article and Find Full Text PDF

Drug development for tuberculosis is hindered by the methodological limitations in the definitions of patient outcomes, particularly the slow organism growth and difficulty in obtaining suitable and representative samples throughout the treatment. We developed target product profiles for biomarker assays suitable for early-phase and late-phase clinical drug trials by consulting subject-matter experts on the desirable performance and operational characteristics of such assays for monitoring of tuberculosis treatment in drug trials. Minimal and optimal criteria were defined for scope, intended use, pricing, performance, and operational characteristics of the biomarkers.

View Article and Find Full Text PDF

Identifying the molecular mechanisms controlling the host's response to infection with is important to understand how the human host controls such parasitic infection. Little is known of the cellular immune response upon infection with . We performed a transcriptomic study using PAXgene-preserved whole blood from 30 nodule-positive individuals and 21 non-endemic controls.

View Article and Find Full Text PDF

Background: With the World Health Organization's (WHO) publication of the 2021-2030 neglected tropical diseases (NTDs) roadmap, the current gap in global diagnostics became painfully apparent. Improving existing diagnostic standards with state-of-the-art technology and artificial intelligence has the potential to close this gap.

Methodology/principal Findings: We prototyped an artificial intelligence-based digital pathology (AI-DP) device to explore automated scanning and detection of helminth eggs in stool prepared with the Kato-Katz (KK) technique, the current diagnostic standard for diagnosing soil-transmitted helminths (STHs; Ascaris lumbricoides, Trichuris trichiura and hookworms) and Schistosoma mansoni (SCH) infections.

View Article and Find Full Text PDF

The neglected tropical disease onchocerciasis, or river blindness, is caused by infection with the filarial nematode Onchocerca volvulus. Current estimates indicate that 17 million people are infected worldwide, the majority of them living in Africa. Today there are no non-invasive tests available that can detect ongoing infection, and that can be used for effective monitoring of elimination programs.

View Article and Find Full Text PDF

The scientific community identified non stool-based biomarkers as the way forward to support soil-transmitted helminth (STH; Ascaris lumbricoides, Trichuris trichiura and the hookworms Ancylostoma duodenale and Necator americanus) and schistosome (S. mansoni and S. haematobium) deworming programs.

View Article and Find Full Text PDF

Intestinal worms, or soil-transmitted helminths (STHs), affect hundreds of millions of people in all tropical and subtropical regions of the world. The most prevalent STH is Ascaris lumbricoides. Through large-scale deworming programs, World Health Organization aims to reduce morbidity, caused by moderate-to-heavy intensity infections, below 2%.

View Article and Find Full Text PDF
Article Synopsis
  • * A new study identified a specific urine biomarker, 2-methyl pentanoyl carnitine (2-MPC), which has high accuracy (85.7% for infections, 90.5% for moderate-to-heavy infections) in identifying A. lumbricoides infections.
  • * The levels of 2-MPC in urine decrease significantly after treatment and correlate with the presence of the parasite in stool, suggesting it could be a useful marker for monitoring infection intensity.
View Article and Find Full Text PDF

We present a lab-on-a-disk technology for fast identification and quantification of parasite eggs in stool. We introduce a separation and packing method of eggs contained in 1 g of stool, allowing for removal of commonly present solid particles, fat droplets and air bubbles. The separation is based on a combined gravitational and centrifugal flotation, with the eggs guided to a packed monolayer, enabling quantitation and identification of subtypes of the eggs present in a single field of view (FOV).

View Article and Find Full Text PDF

Background: Currently, serodiagnosis of infection with the helminth parasite Onchocerca volvulus is limited to the Ov-16 IgG4 test, a test that has limited sensitivity and suboptimal specificity. In previous studies, we identified several linear epitopes that have the potential to supplement the diagnostic toolbox for onchocerciasis.

Methods: In this study three peptides, bearing in total six linear epitopes were transferred to a multiplex ELISA platform.

View Article and Find Full Text PDF

Current diagnostic tools to determine infection with the helminth parasite Onchocerca volvulus have limited performance characteristics. In previous studies, a proteome-wide screen was conducted to identify linear epitopes in this parasite's proteome, resulting in the discovery of 1110 antigenic peptide fragments. Here, we investigated three of these peptides using peptide ELISA's and evaluated their sensitivity and specificity.

View Article and Find Full Text PDF

Background: Ov16 serology is considered a reference method for Onchocerca volvulus epidemiological mapping. Given the suboptimal sensitivity of this test and the fact that seroconversion takes more than a year after infection, additional serological tests might be needed to guide onchocerciasis elimination programmes. Recently, two linear epitopes encoded in OvMP-1 and OvMP-23 peptides were introduced as serological markers, but the observed antibody cross-reactivity in samples originating from Onchocerca volvulus non-endemic areas required further investigation.

View Article and Find Full Text PDF

In our previous study, a proteome-wide screen was conducted to identify linear epitopes in this parasite's proteome, resulting in the discovery of three immunodominant motifs. Here, we investigated whether such antigenic peptides were found in proteins that were already known as vaccine candidates and excretome/secretome proteins for Onchocerca volvulus This approach led to the identification of 71 immunoreactive stretches in 46 proteins. A deep-dive into the immunoreactivity profiles of eight vaccine candidates that were chosen as most promising candidates for further development (Ov-CPI-2, Ov-ALT-1, Ov-RAL-2, Ov-ASP-1, Ov-103, Ov-RBP-1, Ov-CHI-1, and Ov-B20), resulted in the identification of a poly-glutamine stretch in Ov-RAL-2 that has properties for use as a serodiagnostic marker for O.

View Article and Find Full Text PDF

Three O. volvulus immunogenic peptide sequences recently discovered by peptide microarray were adapted to a lateral flow assay (LFA). The LFA employs gold nanoshells as novel high-contrast reporter nanoparticles and detects a serological response against the 3 peptides, found in OvOC9384, OvOC198, and OvOC5528, respectively.

View Article and Find Full Text PDF

Most tissue samples available for cancer research are archived as formalin-fixed paraffin-embedded (FFPE) samples. However, the fixation process and the long storage duration lead to DNA fragmentation and hinder epigenome analysis. The use of droplet digital PCR (ddPCR) to detect DNA methylation has recently emerged.

View Article and Find Full Text PDF

Diagnostic tools for the detection of infection with are presently limited to microfilaria detection in skin biopsies and serological assessment using the Ov16 immunoglobulin G4 (IgG4) rapid test, both of which have limited sensitivity. We have investigated the diagnostic performance of a peptide enzyme-linked immunosorbent assay (ELISA) based on immunodominant linear epitopes previously discovered. Peptides that were used in these assays were designated motif peptides (OvMP): OvMP-1 (VSV-EPVTTQET-VSV), OvMP-2 (VSV-KDGEDK-VSV), OvMP-3 (VSV-QTSNLD-VSV), and the combination of the latter two, OvMP-23 (VSV-KDGEDK-VSV-QTSNLD-VSV).

View Article and Find Full Text PDF

Unlabelled: ᅟ: Previous reports suggest that the 2-methyl butyramide and 2-methyl valeramide metabolites of Ascaris lumbricoides in urine of infected individuals could be considered as urinary biomarkers for active infection. We have developed an LC-MS method with a detection limit of 10 ng/mL using synthetic chemicals as reference material. Urine samples (n = 21) of infected individuals were analyzed for the presence of these metabolites, but they were not detected in any of the samples.

View Article and Find Full Text PDF

Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications.

View Article and Find Full Text PDF

Understanding the immune response upon infection with the filarial nematode Onchocerca volvulus and the mechanisms that evolved in this parasite to evade immune mediated elimination is essential to expand the toolbox available for diagnostics, therapeutics and vaccines development. Using high-density peptide microarrays we scanned the proteome-wide linear epitope repertoire in Cameroonian onchocerciasis patients and healthy controls from Southern Africa which led to the identification of 249 immunodominant antigenic peptides. Motif analysis learned that 3 immunodominant motifs, encompassing 3 linear epitopes, are present in 70, 43, and 31 of these peptides, respectively and appear to be scattered over the entire proteome in seemingly non-related proteins.

View Article and Find Full Text PDF

River blindness, caused by infection with the filarial nematode Onchocerca volvulus, is a neglected tropical disease affecting millions of people. There is a clear need for diagnostic tools capable of identifying infected patients, but that can also be used for monitoring disease progression and treatment efficacy. Plasma-derived parasitic microRNAs have been suggested as potential candidates for such diagnostic tools.

View Article and Find Full Text PDF

Background: Diagnostic procedures for the diagnosis of infection with the nematode parasite Onchocerca volvulus are currently based on the microscopic detection of microfilariae in skin biopsies. Alternative approaches based on amplification of parasitic DNA in these skin biopsies are currently being explored. Mostly this is based on the detection of the O-150 repeat sequence using PCR based techniques.

View Article and Find Full Text PDF

Flu is caused by the influenza virus that, due to mutations, keeps our body vulnerable for infections, making early diagnosis essential. Although immuno-based diagnostic tests are available, they have low sensitivity and reproducibility. In this paper, the prospect of detecting influenza A virus using digital ELISA has been studied.

View Article and Find Full Text PDF