A relatively large body of literature has documented the welfare effects of smallholder farmers' participation in single-commodity output markets. However, limited empirical evidence is available when smallholder farmers participate in multiple-commodities output markets. We tried to fill this gap in the literature by estimating the impacts of smallholder farmers' contemporaneous participation in both maize and legume markets vis-à-vis in only maize or legume markets using household-level data from Tanzania.
View Article and Find Full Text PDFMany studies detail constraints deemed responsible for the limited adoption of new technologies among smallholder farmers in sub-Saharan Africa. By contrast, here we study the conditions that led to the remarkably fast spread of improved chickpea varieties in Ethiopia. Within just seven years, the adoption rate rose from 30 to 80% of the farmers.
View Article and Find Full Text PDFA soil carbon assessment was performed comparing agricultural cropping systems with natural vegetation along a sampling transect spanning different agro-ecologies on the eastern foot slopes of Mount Kenya in Embu county, 125 km from Nairobi, Kenya. The aim was to determine differences in soil carbon stocks and carbon recalcitrance and relate these to soil textural class, altitude, climatic parameters and land use. Soils from main agricultural systems as tea, coffee and maize-based intercropping, as well as from natural vegetation cover were sampled in triplicates, in five layers from 0 to 30 cm in depth and processed for total carbon analysis.
View Article and Find Full Text PDFIn rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA.
View Article and Find Full Text PDFEnsuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland. Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate 'technology extrapolation domains' based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports.
View Article and Find Full Text PDF