Laminins are extracellular matrix glycoproteins with multiple functions in the central nervous system, including maintenance of the blood-brain barrier. Because ischemic brain damage results in rapid degradation of extracellular matrix, we used immunocytochemistry on rat central nervous system after permanent focal ischemia to identify laminins involved in pathophysiology of stroke. At 24 hr after stroke, laminin-1 is transiently expressed by neurons inside the ischemic core, but from 2-3 days to 28 days it is expressed only in basement membrane structures.
View Article and Find Full Text PDFOur earlier studies indicate that the KDI tripeptide of gamma1 laminin reverts paralysis and protects adult rat CNS from excitotoxicity of glutamate and from oxidative stress. Here we show that gamma1 laminin is selectively overexpressed in reactive astrocytes of the amyotrophic lateral sclerosis (ALS) spinal cord, with both gray and white matter astrocytes overexpressing gamma1 laminin. Intensely gamma1 laminin-positive, aggressive-looking reactive astrocytes of the lateral columns of both cervical and thoracic spinal cord surround the lateral ventral horns and roots and extend into the area of the lateral corticospinal tract.
View Article and Find Full Text PDFOur previous studies indicate that the KDI (Lys-Asp-Ile) tripeptide of gamma1 laminin protects central neurons from mechanical trauma and excitotoxicity. At least part of the neuroprotective effect of the KDI tripeptide may be mediated by its inhibitory function on ionotropic glutamate receptors. We studied the protective effect of the KDI tripeptide against 6-hydroxy-dopamine (6-OHDA) induced neurotoxicity in a rat experimental model of Parkinson's disease (PD).
View Article and Find Full Text PDFPrevious work from this laboratory indicates that the KDI (Lys-Asp-Ile) domain of gamma 1-laminin promotes functional regeneration of adult rat spinal cord injuries and protects adult rat hippocampal neurons against massive neuronal death induced by intracerebral injection of the glutamate analogue kainic acid. In the present study, we used patch clamp recordings on cultured human embryonic neocortical neurons and HEK 293 cells expressing recombinant glutamate receptor subunits to study a putative interaction of the KDI with the glutamate system. We show that the KDI domain of gamma 1-laminin is a universal and potent inhibitor of AMPA, kainate, and NMDA subclasses of glutamate receptors, with a noncompetitive action on the AMPA receptor channel activity.
View Article and Find Full Text PDFRegeneration in the central nervous system (CNS) of adult mammals is hampered by formation of a glial scar and by proteins released from the myelin sheaths of injured neuronal pathways. Our recent data indicate that the KDI (Lys-Asp-Ile) domain of gamma1 laminin neutralizes both glial- and myelin-derived inhibitory signals and promotes survival and neurite outgrowth of cultured human spinal cord neurons. We show that after complete transection of the adult rat spinal cord, animals receiving onsite infusion of the KDI domain via osmotic mini-pumps recover and are able to sustain their body weights and walk with their hindlimbs.
View Article and Find Full Text PDFRecent data indicate that the soluble KDI domain of gamma1 laminin promotes survival and neurite outgrowth of human central neurons in vitro (Liebkind et al.[2003] J Neurosci Res 73:637-643), and seems to neutralize both glia- and myelin-derived signals that hamper regeneration in the central nervous system (CNS) of adult mammals. We show that damage of adult rat neocortical and hippocampal areas by a stereotaxic injection of kainic acid (KA) is prevented by a preceding injection of the soluble KDI domain.
View Article and Find Full Text PDFUnlabelled: Nitroxyl anion or its conjugate acid (NO-/HNO) and nitric oxide (NO) may both have pro-oxidative and cytotoxic properties. Superoxide dismutase (SOD) enzyme has been shown to convert reversibly HNO to NO. Mutations found in the SOD enzyme in some familial amyotrophic lateral sclerosis (ALS) patients affect redox properties of the SOD enzyme in a manner, which may affect the equilibrium between NO and HNO.
View Article and Find Full Text PDFRegeneration of adult mammalian CNS is poor as a result of environmental factors that prevent axon growth. The major factors hampering regeneration of central axons include proteins released from the damaged myelin sheets of the injured neuronal pathways and formation of the glial scar. By using an experimental model of human CNS injury, we show that survival and neurite outgrowth of human central neurons are significantly enhanced by the soluble KDI domain of gamma1 laminin.
View Article and Find Full Text PDFIn this study, we investigated the hypothesis that the pro-oxidative properties of Angeli's salt (AS), a nitroxyl anion (HNO/NO-) releasing compound, cause neurotoxicity in dopaminergic neurons. The pro-oxidative properties were demonstrated in vitro by measuring hydroxylation products of salicylate and peroxidation of lipids under various redox conditions. AS (0-1000 microM) released high amounts of hydroxylating species in a concentration dependent manner.
View Article and Find Full Text PDFConfocal laser microscopy of DiI-labeled slices of postnatal rat cerebellum (postnatal Day 4-10; P4-10) was compared to infrared microscopy and the rapid Golgi method (P0-14) to investigate postnatal migration of granule neurons. Vertical migration of the granule neurons occurred already at birth (P0). Surprisingly, mossy fibers often reached the external granule cell layer and were in close contact with the external granule cells.
View Article and Find Full Text PDFImmunocytochemistry, in situ hybridization and Matrigel-embedded cultures were used to investigate the distribution of laminins during development of the human embryonic spinal cord (7-11 weeks). Our results indicate that alpha 1, beta 1, beta 3 and gamma 1 laminins localize as punctate deposits in the floor plate region in association with commissural fibers crossing the ventral midline. In addition, the neurite outgrowth domain of gamma 1 laminin accumulates heavily in the floor plate region, in the notochord and in GFAP-immunoreactive glial fibers of the embryonic spinal cord.
View Article and Find Full Text PDFImmunocytochemistry, Western blotting, and RT-PCR were used to identify the isoforms of laminin expressed in the Alzheimer disease, but not in normal human brain tissue. We found that alpha 1 laminin was heavily over-expressed in Alzheimer disease frontal cortex, and localized in reactive astrocytes of the grey and white matter, and as punctate deposits in the senile placques of the Alzheimer brain tissue. Antibodies against the C-terminal neurite outgrowth domain of the gamma 1 laminin demonstrated expression of the gamma 1 laminin in GFAP-immunoreactive reactive astrocytes of the Alzheimer disease frontal cortex.
View Article and Find Full Text PDFWe investigated the spatial and temporal expression of basement-membrane-forming and neurite-outgrowth-supporting matrix proteins after a unilateral dorsal root injury combined with a collagen I/laminin-1 graft and a stab wound lesion to the dorsal horn of the adult rat spinal cord. Ten days after injury, the gamma1 laminin was induced in the reactive glia. At this early stage, the glial cells failed to express type IV collagen and the alpha1 laminin.
View Article and Find Full Text PDFA neurite outgrowth domain of the gamma1-chain of laminin-1 (RDIAEIIKDI) promotes axon guidance of rat hippocampal neurons, regulates the nuclear movement phase of neuronal migration, and binds to the cellular prion protein (Liesi et al. [1995] J. Neurosci.
View Article and Find Full Text PDFThe cellular mechanism responsible for the death of cerebellar granule neurons in the weaver mutant mouse is still being intensely investigated. To determine if alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors are involved in producing the weaver phenotype or are altered by the weaver gene, we used (1) reverse transcription and polymerase chain reaction (RT-PCR) to detect transcripts of glutamate receptors (GluR1-4) from wild-type and mutant cerebella; (2) immunocytochemistry to establish the types of glutamate receptors present in granule neurons cultured from normal and homozygous weaver postnatal day 5-6 (P5-6) cerebella; (3) 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a blocker of glutamate (AMPA/Kainate/NMDA) receptors, and 6,7-dinitroquinoxaline-2,3-dione (NBQX), a blocker of AMPA and kainate receptors, to assess the number of neurons and the number of neurons with long neurites in cultures of homozygous weaver granule neurons; (4) two-electrode voltage clamp recordings to study AMPA glutamate receptor expression in Xenopus oocytes after injection of mRNA isolated from cerebella of normal and weaver P5-6, postnatal day 10 (P10) and postnatal day 23 (P23) mice; and (5) ethanol, which at low 1-10 mM concentrations had been shown previously to rescue homozygous weaver granule neurons in culture [Liesi et al., J.
View Article and Find Full Text PDFWe have identified by immunocytochemistry, Western blotting, and RT-PCR the isoforms of laminin expressed by glial cells and neurons cultured from human embryonic brain and spinal cord. We show that most of the known laminins are present in human neurons and glial cells. Importantly, Western analysis demonstrates that the isoforms of laminin present in embryonic human brain differ from those expressed in human spinal cord.
View Article and Find Full Text PDFWe demonstrate that the homozygous weaver granule neurons cultured on a laminin substratum fail to express inwardly rectifying potassium currents, including a functional G-protein coupled inwardly rectifying potassium (GIRK)2 potassium channel. By contrast, both normal and weaver Purkinje cells express inwardly rectifying potassium currents, and normal granule cells exhibit inwardly rectifying potassium currents inducible with GTP-gamma-S. In protein extracts of the vermal postnatal day (P)5-9 weaver cerebellum, the GIRK2 protein could not be detected by Western analysis, although the GIRK2 protein was detectable in extracts of the normal vermis.
View Article and Find Full Text PDFInt J Dev Neurosci
December 1999
We examined neuronal differentiation of F9 teratocarcinoma cells using retinoic acid (RA) and cyclic AMP (cAMP) as inducing agents. Neuronal differentiation was monitored using (1) cDNA probes for the rat 68-kDa neurofilament gene, (2) RT-PCR for neurofilament genes and (3) antibodies against several neuronal differentiation markers. We found by Northern blotting that the uninduced F9 cells, grown in 10% serum, expressed mRNA for the 68-kDa neurofilament protein whereas the control cells, grown in 3% serum, failed to express detectable levels of the 68-kDa neurofilament transcripts.
View Article and Find Full Text PDFBiochemical, immunocytochemical, and molecular biological techniques were used to investigate the expression of N-methyl-D-aspartate (NMDA) receptor subunits in migration-deficient weaver mouse cerebellum in vivo and in primary cultures of the vermal weaver granule neurons with or without a rescue by verapamil. We found that both NMDAR1(zeta1) message and protein were expressed by the weaver granule neurons in situ. Immunocytochemical and biochemical analyses indicated that granule neurons of the weaver cerebellum expressed R1(zeta1) and R2A(epsilon1) subunits but showed little expression of the R2B(epsilon2) subunit.
View Article and Find Full Text PDFWe show that axon guidance of embryonic hippocampal neurons is promoted by pathways of a decapeptide (RDIAEIIKDI) derived from a neurite outgrowth domain of the gamma1 chain of laminin-1. This guidance is directly dependent on: (1) a concentration difference of the decapeptide between the peptide pathway and its surrounding areas, and (2) the optimal surface geometry of the decapeptide pathway. These results indicate that axon guidance of central neurons may proceed along a preferred substratum pathway without a concentration gradient of the guiding molecule along this pathway, or without a repulsive molecule next to the axon pathway.
View Article and Find Full Text PDFReinnervation of the muscles and skin in the rat hindpaw was studied after transection and attempted repair of the sciatic nerve. Reconnecting the transected nerve with lens cleaning paper was at least as effective in rejoining the transected nerves as traditional microsurgical neurorraphy. Paper induced a slightly bigger fibrous scar around the site of transection than neurorraphy, but this scar did not cause impairment of functional recovery or excessive signs of neuropathic pain.
View Article and Find Full Text PDFThe mechanisms by which the weaver gene (Reeves et al., 1989; Patil et al., 1995) inhibits neurite extension and/or induces death of the granule neurons in homozygous weaver mouse cerebellum are not presently understood.
View Article and Find Full Text PDFPrenatal exposure of human brain to ethanol impairs neuronal migration and differentiation and causes mental retardation. The present results indicate that the adverse effects of ethanol on brain development may be partly due to the ethanol-induced disturbance of neuronal interaction with laminin, a protein involved in neuronal migration and axon guidance. This report shows that physiological concentrations (IC50 = 28 mM) of ethanol inhibit neurite outgrowth and neuronal migration of the rat cerebellar granule neurons on a laminin substratum.
View Article and Find Full Text PDFJ Neurosci Methods
November 1996
We describe here a modification procedure for chemically fabricating neuron adhesive substrates to study the substratum-guided neurite outgrowth in culture. These substrates were fabricated by chemically attaching a synthetic peptide derived from a neurite-out-growth-promoting domain of the B2 chain of laminin. The attachment was carried out by coupling the peptide to an amine-derived glass surface using a heterobifunctional crosslinker.
View Article and Find Full Text PDFThe weaver mutation impairs migration of the cerebellar granular neurons and induces neuronal death during the first two weeks of postnatal life. To elucidate the molecular mechanisms for the impaired neuronal migration, we investigated the rescue mechanisms of the weaver (wv/wv) granule neurons in vitro. We found that Fab2 fragments of antibodies against a neurite outgrowth domain of the B2 chain of laminin enhanced neurite outgrowth and neuronal migration of the weaver granule neurons on a laminin substratum and in the established cable culture system.
View Article and Find Full Text PDF