Publications by authors named "Liese N Beenken-Rothkopf"

Biomaterial encapsulation of islets has been proposed to improve the long-term success of islet transplantation by recreating a suitable microenvironment and enhancing cell-matrix interactions that affect cellular function. Protein polymer hydrogels previously showed promise as a biocompatible scaffold by maintaining high cell viability. Here, enzymatically-crosslinked protein polymers were used to investigate the effects of varying scaffold properties and of introducing ECM proteins on the viability and function of encapsulated MIN6 β-cells.

View Article and Find Full Text PDF

Protein polymer-based hydrogels have shown potential for tissue engineering applications, but require biocompatibility testing for in vivo use. Enzymatically crosslinked protein polymer-based hydrogels were tested in vitro and in vivo to evaluate their biocompatibility. Endotoxins present in the hydrogel were removed by Trition X-114 phase separation.

View Article and Find Full Text PDF

Pancreatic islet encapsulation within biosynthetic materials has had limited clinical success due to loss of islet function and cell death. As an alternative encapsulation material, a silk-based scaffold was developed to reestablish the islet microenvironment lost during cell isolation. Islets were encapsulated with ECM proteins (laminin and collagen IV) and mesenchymal stromal cells (MSCs), known to have immunomodulatory properties or to enhance islet cell graft survival and function.

View Article and Find Full Text PDF