Publications by authors named "Liesbeth P Verhagen"

Increasing evidence suggests that natural killer (NK) cells are composed of distinct functional subsets. This multifunctional role has made them an attractive choice for anticancer immunotherapy. A functional NK cell repertoire is generated through cellular education, resulting in a heterogeneous NK cell population with distinct capabilities responding to different stimuli.

View Article and Find Full Text PDF

During the last decade, advances in single cell technologies have ignited increased understanding of natural killer cells (NK cells), which turned out to be far more complex than originally thought. Ample studies have established tissue-specific phenotypic variation within this cell population; however, the functional implication of this vast variation is still unclear. At single-cell level, the function of a NK cell is tightly regulated by several checkpoints however upon proper recognition the cell can deliver a lytic hit as early as 10 min or could take hours before they can kill their target cells.

View Article and Find Full Text PDF

Hereditary spherocytosis (HS) originates from defective anchoring of the cytoskeletal network to the transmembrane protein complexes of the red blood cell (RBC). Red cells in HS are characterized by membrane instability and reduced deformability and there is marked heterogeneity in disease severity among patients. To unravel this variability in disease severity, we analyzed blood samples from 21 HS patients with defects in ankyrin, band 3, α-spectrin or β-spectrin using red cell indices, eosin-5-maleimide binding, microscopy, the osmotic fragility test, Percoll density gradients, vesiculation and ektacytometry to assess cell membrane stability, cellular density and deformability.

View Article and Find Full Text PDF

Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions.

View Article and Find Full Text PDF

The PI(3)K-PKB-FOXO signalling network provides a major intracellular hub for the regulation of cell proliferation, survival and stress resistance. Here we report an unexpected role for FOXO transcription factors in regulating autophagy by modulating intracellular glutamine levels. To identify transcriptional targets of this network, we performed global transcriptional analyses after conditional activation of the key components PI(3)K, PKB/Akt, FOXO3 and FOXO4.

View Article and Find Full Text PDF

Glycogen storage disease type 1b (GSD 1b) is caused by mutations in the Glucose-6-phosphate transporter and is characterized by impaired glucose homeostasis. In addition, GSD-1b is associated with chronic neutropenia resulting in recurrent infections and inflammatory bowel disease. It is unclear whether the neutropenia is solely due to enhanced apoptosis of mature neutrophils or whether aberrant neutrophil development may also contribute.

View Article and Find Full Text PDF

The granulocyte-macrophage colony-stimulating factor (GM-CSF)/interleukin (IL)-3/IL-5 receptor family regulates the production and function of myeloid cells. These cytokines signal through receptor complexes that consist of unique ligand-binding alpha-chains and common signaling beta-chains. IL-5 is distinct from IL-3 and GM-CSF in its capacity to induce eosinophil development, however, the molecular mechanisms that generate functional diversity within this receptor family are mostly unknown.

View Article and Find Full Text PDF

Although much progress has been made in understanding the molecular mechanisms underlying agonist-induced "inside-out" activation of integrins, little is known about how basal levels of integrin function are maintained. This is particularly important for nonactivated eosinophils, where intermediate activation of alpha(4)beta(1) integrin supports recruitment to endothelial cells under flow conditions. Depletion of intracellular Ca(2+) and pharmacological inhibition of phospholipase C (but not other intracellular signaling molecules, including PI3K, ERK1/2, p38 MAPK, and tyrosine kinase activity) abrogated basal alpha(4) integrin activity in nonactivated eosinophils.

View Article and Find Full Text PDF

Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell production. An ex vivo differentiation system was used to investigate the role of PI3K and its downstream effector, protein kinase B (PKB/c-akt) in myelopoiesis.

View Article and Find Full Text PDF

An interstitial deletion on chromosome 4q12 resulting in the formation of the FIP1L1-PDGFRA fusion protein is involved in the pathogenesis of imatinib-sensitive chronic eosinophilic leukemia. The molecular mechanisms underlying the development of disease are largely undefined. Human CD34(+) hematopoietic progenitor cells were used to investigate the role of FIP1L1-PDGFRA in modulating lineage development.

View Article and Find Full Text PDF

Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis.

View Article and Find Full Text PDF