Fluorescence microscopy has revolutionized biological research by enabling the visualization of subcellular structures at high resolution. With the increasing complexity and volume of microscopy data, there is a growing need for automated image analysis to ensure efficient and consistent interpretation. In this study, we introduce PunctaFinder, a novel Python-based algorithm designed to detect puncta, small bright spots, in raw fluorescence microscopy images without image denoising or signal enhancement steps.
View Article and Find Full Text PDFTransport through the nuclear pore complex (NPC) relies on intrinsically disordered FG-nucleoporins (FG-Nups) forming a selective barrier. Away from the NPC, FG-Nups readily form condensates and aggregates, and we address how this behavior is surveilled in cells. FG-Nups, including Nsp1, together with the nuclear transport receptor Kap95, form a native daughter cell-specific cytosolic condensate in yeast.
View Article and Find Full Text PDFCellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state.
View Article and Find Full Text PDFThe integrity of the nuclear envelope depends on the function of nuclear pore complexes (NPCs), transport channels that control macromolecular traffic between the nucleus and cytosol. The central importance of NPCs suggests the existence of quality control (QC) mechanisms that oversee their assembly and function. In this perspective, we emphasize the challenges associated with NPC assembly and the need for QC mechanisms that operate at various stages of an NPC's life.
View Article and Find Full Text PDFSelective transport through the nuclear pore complex (NPC) depends on the dynamic binding of FG-repeat containing nucleoporins, the FG-nups, with each other and with Karyopherins (Kaps). Here, we assessed the specificity and mechanism by which the aliphatic alcohol 1,6-hexanediol (1,6HD) disrupts the permeability barrier of NPCs in live baker's yeast cells. After a 10-minute exposure to 5% 1,6HD, no notable changes were observed in cell growth, cytosolic pH and ATP levels, or the appearance of organelles.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast NPCs at transport-relevant timescales.
View Article and Find Full Text PDFWhile our understanding of the nuclear pore complex (NPC) structure is progressing spectacularly, the organizational principles of its nuclear basket remain elusive. In this issue, King et al. (2022.
View Article and Find Full Text PDFBiogenesis of nuclear pore complexes (NPCs) includes the formation of the permeability barrier composed of phenylalanine-glycine-rich nucleoporins (FG-Nups) that regulate the selective passage of biomolecules across the nuclear envelope. The FG-Nups are intrinsically disordered and prone to liquid-liquid phase separation and aggregation when isolated. How FG-Nups are protected from making inappropriate interactions during NPC biogenesis is not fully understood.
View Article and Find Full Text PDFProteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states.
View Article and Find Full Text PDFTransport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results.
View Article and Find Full Text PDFCellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known.
View Article and Find Full Text PDFGenetically encoded Förster resonance energy transfer (FRET)-based probes allow a sensitive readout for different or specific parameters in the living cell. We previously demonstrated how FRET-based probes could quantify macromolecular crowding with high spatio-temporal resolution and under various conditions. Here, we present a protocol developed for the use of FRET-based crowding probes in baker's yeast, but the general considerations also apply to other species, as well as other FRET-based sensors.
View Article and Find Full Text PDFThe nuclear pore complex (NPC) is the sole gateway to the nuclear interior, and its function is essential to all eukaryotic life. Controlling the functionality of NPCs is a tremendous challenge for cells. Firstly, NPCs are large structures, and their complex assembly does occasionally go awry.
View Article and Find Full Text PDFTo ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age-dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells.
View Article and Find Full Text PDFThe nuclear pore complex (NPC) is embedded in the nuclear envelope and forms the main gateway to the nuclear interior including the inner nuclear membrane (INM). Two INM proteins in yeast are selectively imported. Their sorting signals consist of a nuclear localization signal, separated from the transmembrane domain by a long intrinsically disordered (ID) linker.
View Article and Find Full Text PDFNuclear transport is facilitated by the Nuclear Pore Complex (NPC) and is essential for life in eukaryotes. The NPC is a long-lived and exceptionally large structure. We asked whether NPC quality control is compromised in aging mitotic cells.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) are large protein complexes embedded in the nuclear envelope separating the cytoplasm from the nucleoplasm in eukaryotic cells. They function as selective gates for the transport of molecules in and out of the nucleus. The inner wall of the NPC is coated with intrinsically disordered proteins rich in phenylalanine-glycine repeats (FG-repeats), which are responsible for the intriguing selectivity of NPCs.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET)-based sensors are a valuable tool to quantify cell biology, yet it remains necessary to identify and prevent potential artifacts in order to exploit their full potential. We show here that artifacts arising from slow donor mCerulean3 maturation can be substantially diminished by constitutive expression in both prokaryotic and eukaryotic cells, which can also be achieved by incorporation of faster-maturing FRET donors. We developed an improved version of the donor mTurquoise2 that matures faster than the parent protein.
View Article and Find Full Text PDFThe budding yeast divides asymmetrically, with a smaller daughter cell emerging from its larger mother cell. While the daughter lineage is immortal, mother cells age with each cell division and have a finite lifespan. The replicative ageing of the yeast mother cell has been used as a model to study the ageing of mitotically active human cells.
View Article and Find Full Text PDFThe budding yeast Saccharomyces cerevisiae divides asymmetrically, producing a new daughter cell from the original mother cell. While daughter cells are born with a full lifespan, a mother cell ages with each cell division and can only generate on average 25 daughter cells before dying. Aged yeast cells exhibit genomic instability, which is also a hallmark of human aging.
View Article and Find Full Text PDFRecently, efforts have been made to characterize the hallmarks that accompany and contribute to the phenomenon of aging, as most relevant for humans 1. Remarkably, studying the finite lifespan of the single cell eukaryote budding yeast (recently reviewed in 2 and 3) has been paramount for our understanding of aging. Here, we compile observations from literature over the past decades of research on replicatively aging yeast to highlight how the hallmarks of aging in humans are present in yeast.
View Article and Find Full Text PDFThere is a large variability in lifespans of individuals even if they are genetically identical and raised under the same environmental conditions. Our recent system wide study of replicative aging in baker's yeast predicts that protein biogenesis is a driver of aging. Here, we address how the natural variation in replicative lifespan within wild-type populations of yeast cells correlates to three biogenesis-related parameters, namely cell size, ribosomal protein Rpl13A-GFP levels, and division times.
View Article and Find Full Text PDFIt is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data.
View Article and Find Full Text PDF