Publications by authors named "Liesbeth Hekking"

The complex architecture of the murine fetus originates from a simple ball of pluripotent epiblast cells, which initiate morphogenesis upon implantation. In turn, this establishes an intermediate state of tissue-scale organization of the embryonic lineage in the form of an epithelial monolayer, where patterning signals delineate the body plan. However, how this major morphogenetic process is orchestrated on a cellular level and synchronized with the developmental progression of the epiblast is still obscure.

View Article and Find Full Text PDF

Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood.

View Article and Find Full Text PDF

During the peri-implantation stages, the mouse embryo radically changes its appearance, transforming from a hollow-shaped blastocyst to an egg cylinder. At the same time, the epiblast gets reorganized from a simple ball of cells to a cup-shaped epithelial monolayer enclosing the proamniotic cavity. However, the cavity's function and mechanism of formation have so far been obscure.

View Article and Find Full Text PDF

Insight into processes leading to rupture of intracranial aneurysms (IAs) may identify biomarkers for rupture or lead to management strategies reducing the risk of rupture. We characterized and quantified (ultra)structural differences between unruptured and ruptured aneurysmal walls. Six unruptured and 6 ruptured IA fundi were resected after microsurgical clipping and analyzed by correlative light microscopy for quantitative analysis (proportion of the vessel wall area) and transmission electron microscopy for qualitative ultrastructural analysis.

View Article and Find Full Text PDF

Central nervous system myelin is a multilayered membrane sheath generated by oligodendrocytes for rapid impulse propagation. However, the underlying mechanisms of myelin wrapping have remained unclear. Using an integrative approach of live imaging, electron microscopy, and genetics, we show that new myelin membranes are incorporated adjacent to the axon at the innermost tongue.

View Article and Find Full Text PDF

The trafficking of cytotoxic CD8(+) T lymphocytes across the lining of the cerebral vasculature is key to the onset of the chronic neuro-inflammatory disorder multiple sclerosis. However, the mechanisms controlling their final transmigration across the brain endothelium remain unknown. Here, we describe that CD8(+) T lymphocyte trafficking into the brain is dependent on the activity of the brain endothelial adenosine triphosphate-binding cassette transporter P-glycoprotein.

View Article and Find Full Text PDF

Background: Cellular senescence is associated with cellular dysfunction and has been shown to occur in vivo in age-related cardiovascular diseases such as atherosclerosis. Atherogenesis is accompanied by intimal accumulation of LDL and increased extravasation of monocytes towards accumulated and oxidized LDL, suggesting an affected barrier function of vascular endothelial cells. Our objective was to study the effect of cellular senescence on the barrier function of non-senescent endothelial cells.

View Article and Find Full Text PDF

Tie-2 is a member of the receptor tyrosine kinase family and is required for vascular remodeling and maintenance of mammalian vessel integrity. A number of mutations in the human TIE2 gene have been identified in patients suffering from cutaneomucosal venous malformations and ventricular septal defects. How exactly Tie-2 signaling pathways play different roles in both vascular development and vascular stability is unknown.

View Article and Find Full Text PDF

Caveolae are invaginations of the plasma membrane involved in multiple cellular processes, including transcytosis. In this paper we present an extensive 3-D electron tomographic study of the endothelial caveolar system in situ. Analysis of large cellular volumes of (high-pressure frozen, freeze-substituted and epon-embedded) human umbilical vein endothelial cells (HUVECs) provided a notable view on the architecture of the caveolar system that comprises--as confirmed by 3-D immunolabeling for caveolin of 'intact' cells--bona fide caveolae, free plasmalemmal vesicles, racemose invaginations and free multi-caveolar bodies.

View Article and Find Full Text PDF

Unlabelled: During collateral artery growth, monocytes adhere to the endothelium and secrete cytokines from the perivascular space promoting arteriogenesis. Recently, the endothelial glycocalyx has been shown to modulate leucocyte infiltration in atherogenic regions. The role of this endothelial surface coating in arteriogenesis, however, has not been investigated so far.

View Article and Find Full Text PDF

Aims: In a recent report, we established at the genome-wide level those genes that are specifically upregulated in the endothelium of atherosclerotic plaques in human arteries. As the transcriptome data revealed that mRNA for the tetraspanin family member CD81 is significantly and specifically upregulated in the endothelium overlying early atheroma, we set out to validate these results on the protein level, and investigate the functional consequences of CD81 upregulation.

Methods And Results: Immunohistochemical analysis in an independent set of donor arteries verified in the endothelium of early human atherosclerotic lesions the enhanced expression of CD81, which appears oxidative stress-dependent.

View Article and Find Full Text PDF

Because of its dynamic structure, the omentum plays a key role in the immunity of the peritoneal cavity by orchestrating peritoneal cell recruitment. Because mast cells accumulate in the omentum upon experimental peritoneal dialysis (PD) and may produce angiogenic/profibrotic factors, it was hypothesized that mast cells mediate omental tissue remodeling during PD. Daily treatment with conventional PD fluid (PDF) for 5 wk resulted in a strong omental remodeling response, characterized by an approximately 10-fold increase in mast cell density (P < 0.

View Article and Find Full Text PDF

Background: In experimental peritoneal dialysis (PD) studies, the occurrence of peritonitis is a confounder in the interpretation of effects of chronic peritoneal exposure to dialysis solutions. Since fluid cannot be drained in most experimental PD models in the rat, it is impossible to diagnose peritonitis based on dialysate white blood cell counts. To study the value of serum markers for the presence of peritonitis, alpha-2-macroglobulin (alpha2M) and albumin were measured in rats with and without peritonitis after chronic exposure to dialysis solutions.

View Article and Find Full Text PDF

Background: Mesothelial cell transplantation has been suggested to improve mesothelial repair after surgery, recurrent peritonitis and peritoneal dialysis.

Methods: In this study we evaluated mesothelial cell transplantation during the resolution phase of experimentally thioglycollate-induced peritonitis in rats. To this end 4 x 10(6) DiO-labeled autologous mesothelial cells were transplanted 1 week after peritonitis induction.

View Article and Find Full Text PDF

Background: The formation of glucose degradation products (GDPs) and accumulation of advanced glycation end products (AGEs) partly contribute to the bioincompatibility of peritoneal dialysis fluids (PDF). Aminoguanidine (AG) scavenges GDPs and prevents the formation of AGEs.

Methods: In a peritoneal dialysis (PD) rat model, we evaluated the effects of the addition of AG to the PDF on microcirculation and morphology of the peritoneum, by intravital microscopy and quantitative morphometric analysis.

View Article and Find Full Text PDF

Background: Peritoneal dialysis (PD) is a treatment modality for patients with renal failure. Both the uraemic state of these patients and chronic exposure to PD fluid are associated with the development of functional and structural alterations of the peritoneal membrane. In a well-established chronic PD rat model, we compared rats with normal renal function with subtotal nephrectomized rats that developed uraemia.

View Article and Find Full Text PDF

Background: Glucose-containing peritoneal dialysis fluids (PDF) show impaired biocompatibility, which is related partly to their high glucose content, presence of glucose degradation products, low pH, and lactate buffer, or a combination of these factors. In a rat chronic peritoneal exposure model, we compared effects of an amino acid-based PDF (AA-PDF) with a glucose-containing PDF on the peritoneal microcirculation and morphology.

Method: Two groups of rats received 10 mL of either fluid daily for 5 weeks via peritoneal catheters connected to implanted subcutaneous mini vascular access ports.

View Article and Find Full Text PDF

Background: Recurrent infections in peritoneal dialysis (PD) patients may alter the abdominal wall resulting in an impairment of its dialysis capacity. In this study we investigated both in vitro and in vivo the effects of mesothelial exposure to dialysis fluids on the migration of neutrophils and their capacity to clear a bacterial infection.

Methods: First, we evaluated neutrophil migration in an in vitro transwell model for the peritoneal membrane with monolayers of primary human mesothelial cells (MC) on the lower side and primary human endothelial cells (EC) on top of the same transwell membrane, upon exposure of MC to PD fluid (PDF)-derived components.

View Article and Find Full Text PDF

Background: Long-term peritoneal dialysis (PD) is associated with the development of functional and structural alterations of the peritoneal membrane. In this study, we investigated the contribution of low pH lactate buffer, high glucose concentration and glucose degradation products to peritoneal injury in a rat peritoneal exposure model.

Methods: Rats received daily 10 ml of either heat-sterilized (3.

View Article and Find Full Text PDF

Objectives: Mesothelial cell (MC) injury caused by continuous exposure to unphysiological peritoneal dialysis (PD) fluid and by episodes of peritonitis can eventually lead to peritoneal adhesions and peritoneal fibrosis. In the present study, we evaluated the possibility of using autologous genetically modified MCs for transplantation after the induction of peritoneal injury by acute inflammatory mediators or chronic instillation of PD fluid.

Methods: Rats were injected intraperitoneally either once with N-formyl-methionyl-leucyl-phenylalanine (fMLP), or thioglycollate, or PD fluid [i.

View Article and Find Full Text PDF

The long-term effects of a standard lactate-buffered dialysis fluid and a new, two-chamber, bicarbonate/lactate-buffered dialysis fluid (with fewer glucose degradation products and a neutral pH) were compared in an in vivo peritoneal exposure model. Rats were given daily injections, via an access port, of 10 ml of standard solution or bicarbonate/lactate-buffered solution for 9 to 10 wk. The omentum, peritoneum, and mesothelial cell layer were screened for morphologic changes.

View Article and Find Full Text PDF