Publications by authors named "Liesbeth Bieghs"

Multiple myeloma (MM) is a highly heterogeneous plasma cell malignancy. The MM cells reside in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, proliferation, and drug resistance. As in most cancers, the insulin-like growth factor (IGF) system has been demonstrated to play a key role in the pathogenesis of MM.

View Article and Find Full Text PDF

Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown.

View Article and Find Full Text PDF

The ABT-analogous 737, 263 and 199 are BH3 mimetics showing potent anti-myeloma (MM) activity, but only on defined molecular subgroups of MM patients presenting a Bcl-2high/Mcl-1low profile. IGF-1 is a major survival factor in MM regulating the expression of Bcl-2 proteins and might therefore be a resistance factor to these ABT-analogous. We first show that IGF-1 protected human MM cell lines (HMCLs) against ABT-737.

View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most commonly diagnosed hematological malignancy, characterized by a monoclonal proliferation of malignant cells in the bone marrow. Despite recent advances in treatment strategies, MM remains incurable and new therapeutical targets are needed. Recently forodesine, a purine nucleoside phosphorylase inhibitor, was found to induce apoptosis in leukemic cells of chronic lymphocytic leukemia patients by increasing the dGTP levels.

View Article and Find Full Text PDF