Functional tumor-specific cytotoxic T cells elicited by therapeutic cancer vaccination in combination with oncolytic viruses offer opportunities to address resistance to checkpoint blockade therapy. Two cancer vaccines, the self-adjuvanting protein vaccine KISIMA, and the recombinant oncolytic vesicular stomatitis virus pseudotyped with LCMV-GP expressing tumor-associated antigens, termed VSV-GP-TAA, both show promise as a single agent. Here we find that, when given in a heterologous prime-boost regimen with an optimized schedule and route of administration, combining KISIMA and VSV-GP-TAA vaccinations induces better cancer immunity than individually.
View Article and Find Full Text PDFBackground: Oncolytic virotherapy is thought to result in direct virus-induced lytic tumour killing and simultaneous activation of innate and tumour-specific adaptive immune responses. Using a chimeric vesicular stomatitis virus variant VSV-GP, we addressed the direct oncolytic effects and the role of anti-tumour immune induction in the syngeneic mouse lung cancer model LLC1.
Methods: To study a tumour system with limited antiviral effects, we generated interferon receptor-deficient cells (LLC1-IFNAR1).
In vivo studies are the mainstay of translational immune-oncology and virotherapy research. In general oncology, bioluminescence imaging provides a convenient and reliable tool to visualize disseminated tumors and monitor growth kinetics or treatment effects. Unique aspects of this method in the field of oncolytic viruses are tracing the process of tumor-specific targeting, assessing potential off-target replication, and visualizing intratumoral spread.
View Article and Find Full Text PDF