Background: Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae.
View Article and Find Full Text PDFBackground: Hypocholesterolemia hallmarks critical illness though the underlying pathophysiology is incompletely understood. As low circulating cholesterol levels could partly be due to an increased conversion to cortisol/corticosterone, we hypothesized that glucocorticoid treatment, via reduced de novo adrenal cortisol/corticosterone synthesis, might improve cholesterol availability and as such affect adrenal gland and skeletal muscle function.
Methods: In a matched set of prolonged critically ill patients (n = 324) included in the EPaNIC RCT, a secondary analysis was performed to assess the association between glucocorticoid treatment and plasma cholesterol from ICU admission to day five.
Context: Muscle expresses and secretes several myokines that bring about benefits in distant organs.
Objective: We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness.
Methods: We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice.
In septic mice, 3-hydroxybutyrate-sodium-salt has shown to partially prevent sepsis-induced muscle weakness. Although effective, the excessive sodium load was toxic. We here investigated whether ketone ester 3-hydroxybutyl-3-hydroxybutanoate (3HHB) was a safer alternative.
View Article and Find Full Text PDFBackground: Reduced glucocorticoid-receptor (GR) expression in blood suggested that critically ill patients become glucocorticoid-resistant necessitating stress-doses of glucocorticoids. We hypothesised that critical illness evokes a tissue-specific, time-dependent expression of regulators of GR-action which adaptively guides glucocorticoid action to sites of need.
Methods: We performed a prospective, observational, cross-sectional human study and two translational mouse studies.
J Cachexia Sarcopenia Muscle
June 2022
Background: Intensive care unit (ICU)-acquired weakness can persist beyond ICU stay and has been associated with long-term functional impairment of ICU survivors. Recently, DNA methylation alterations were found in the blood of ICU patients, partially explaining long-term developmental impairment of critically ill children. As illness-induced aberrant DNA methylation theoretically could also be involved in long-term weakness, we investigated whether the DNA methylation signature in muscle of adult critically ill patients differs from that in muscle of healthy controls.
View Article and Find Full Text PDFBackground: Muscle weakness is a frequently occurring complication of sepsis, associated with increased morbidity and mortality. Interestingly, obesity attenuates sepsis-induced muscle wasting and weakness. As the adipokine leptin is strongly elevated in obesity and has been shown to affect muscle homeostasis in non-septic conditions, we aimed to investigate whether leptin mediates the protective effect of obesity on sepsis-induced muscle weakness.
View Article and Find Full Text PDFPurpose: Sepsis is hallmarked by high plasma cortisol/corticosterone (CORT), low adrenocorticotropic hormone (ACTH), and high pro-opiomelanocortin (POMC). While corticotropin-releasing hormone-(CRH) and arginine-vasopressin (AVP)-driven pituitary POMC expression remains active, POMC processing into ACTH becomes impaired. Low ACTH is accompanied by loss of adrenocortical structure, although steroidogenic enzymes remain expressed.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
September 2021
Background: In septic mice, supplementing parenteral nutrition with 150 mg/day 3-hydroxybutyrate-sodium-salt (3HB-Na) has previously shown to prevent muscle weakness without obvious toxicity. The main objective of this study was to identify the toxic threshold of 3HB-Na supplementation in septic mice, prior to translation of this promising intervention to human use.
Methods: In a centrally-catheterized, antibiotic-treated, fluid-resuscitated, parenterally fed mouse model of prolonged sepsis, we compared with placebo the effects of stepwise escalating doses starting from 150 mg/day 3HB-Na on illness severity and mortality (n = 103).
Background: Sepsis is typically hallmarked by high plasma (free) cortisol and suppressed cortisol breakdown, while plasma adrenocorticotropic hormone (ACTH) is not increased, referred to as 'ACTH-cortisol dissociation.' We hypothesized that sepsis acutely activates the hypothalamus to generate, via corticotropin-releasing hormone (CRH) and vasopressin (AVP), ACTH-induced hypercortisolemia. Thereafter, via increased availability of free cortisol, of which breakdown is reduced, feedback inhibition at the pituitary level interferes with normal processing of pro-opiomelanocortin (POMC) into ACTH, explaining the ACTH-cortisol dissociation.
View Article and Find Full Text PDFPurpose: To investigate the effect of Neuromuscular Electrical Stimulation (NMES) on muscle thickness, strength and morphological and molecular markers of the quadriceps.
Materials And Methods: Adult critically ill patients with an expected prolonged stay received unilateral quadriceps NMES sessions for 7 consecutive days. Before and after the intervention period, quadriceps thickness was measured with ultrasound.
Background: ICU-acquired weakness is a debilitating consequence of prolonged critical illness that is associated with poor outcome. Recently, premorbid obesity has been shown to protect against such illness-induced muscle wasting and weakness. Here, we hypothesized that this protection was due to increased lipid and ketone availability.
View Article and Find Full Text PDFIntroduction: Non-thyroidal illness (NTI), which occurs with fasting and in response to illness, is characterized by thyroid hormone inactivation with low triiodothyronine (T3) and high reverse T3 (rT3), followed by suppressed thyrotropin (TSH). Withholding supplemental parenteral nutrition early in pediatric critical illness (late-PN), thus accepting low/no macronutrient intake up to day 8 in the pediatric intensive care unit (PICU), accelerated recovery compared to initiating supplemental parenteral nutrition early (early-PN). Whether NTI is harmful or beneficial in pediatric critical illness and how it is affected by a macronutrient deficit remains unclear.
View Article and Find Full Text PDFSepsis is hallmarked by hypercortisolemia, a stress response essential for survival. This elevation in plasma cortisol is partially brought about by suppressed hepatic cortisol breakdown. We demonstrate that a controlled downregulation of the hepatic glucocorticoid receptor (hepatic GR) is crucial.
View Article and Find Full Text PDFMitochondrial dysfunction and endoplasmic reticulum (ER) stress, which activates the unfolded protein response (UPR), mediate critical illness-induced organ failure, often affecting the liver. Autophagy is known to alleviate both and suppressed or insufficiently activated autophagy in prolonged illness has shown to associate with organ failure. Whether insufficient autophagy contributes to organ failure during critical illness by affecting these underlying mechanisms is incompletely understood.
View Article and Find Full Text PDF