Receptor activator of nuclear factor-κB ligand (RANKL) has been actively pursued as a therapeutic target for osteoporosis, given that RANKL is the master mediator of bone resorption as it promotes osteoclast differentiation, activity and survival. We employed a structure-based virtual screening approach comprising two stages of experimental evaluation and identified 11 commercially available compounds that displayed dose-dependent inhibition of osteoclastogenesis. Their inhibitory effects were quantified through TRAP activity at the low micromolar range (IC < 5 μΜ), but more importantly, 3 compounds displayed very low toxicity (LC > 100 μΜ).
View Article and Find Full Text PDFThe aim of this study is to improve the aqueous solubility of a group of compounds without interfering with their bioassay as well as to create a relevant prediction model. A series of 55 potential small-molecule inhibitors of tumor necrosis factor-alpha (TNF-α; SPD304 and 54 analogues), many of which cannot be bioassayed because of their poor solubility, was used for this purpose. The solubility of many of the compounds was sufficiently improved to allow measurement of their respective dissociation constants (K).
View Article and Find Full Text PDFA one-step, three-component condensation of allenyl boronic acids or allenyl pinacolboronates with amines and aldehydes affords α-allenyl or α-propargyl α-amino acids and anti-β-amino alcohols. This process gives the allenyl or propargyl product depending on the amine and boron components. Secondary amines generate exclusively α-allenyl α-amino acids, while primary aliphatic amines lead to α-propargyl α-amino acids.
View Article and Find Full Text PDFSPD-304 was discovered as a promising tumor necrosis factor alpha (TNF) antagonist that promotes dissociation of TNF trimers and therefore blocks the interaction of TNF and its receptor. However, SPD-304 contains a potentially toxic 3-alkylindole moiety, which can be bioactivated to a reactive electrophilic intermediate. A series of SPD-304 analogs was synthesized with the aim to diminish its toxicophore groups while maintaining the binding affinity for TNF.
View Article and Find Full Text PDFTwo new, visible-excited and red-emitting fluorescent Ca(2+) indicators were synthesized and the spectral profiles of their free and Ca(2+) bound forms were studied. The fluorescent properties of these probes are due to the extended conjugation of the chromeno[3',2':3,4]pyrido[1,2a][1,3]benzimidazole chromophore incorporated in their BAPTA-type, Ca(2+) chelating structure. The compounds, namely ICPBC and its N-dodecyl analog C12-ICPBC exhibit Ca(2+) dissociation constants of 7.
View Article and Find Full Text PDFTwo new potential near-membrane iminocoumarin-based fluorescent Ca(2+) indicators were synthesized and the spectral profiles of their free and Ca(2+) bound forms were studied. The probes incorporate in their BAPTA-related structures, the 3-(benzimidazolyl)iminocoumarin or the 3-(benzothiazolyl)iminocoumarin moiety, substituted at the imino nitrogen with an n-dodecyl lipophilic chain. The compounds are excited with visible light and have Ca(2+) dissociation constant values of 5.
View Article and Find Full Text PDFA series of iminocoumarin-based fluorescent Ca2+ indicators were synthesized and the spectral profiles of their free and Ca2+ bound forms were studied. The newly-synthesized compounds incorporate the Ca2+ chelating structure of BAPTA. The chromophore moieties are iminocoumarins substituted at the 3-position with benzothiazolyl, benzoxazolyl and benzimidazolyl groups.
View Article and Find Full Text PDF