The oral delivery of biologics such as therapeutic proteins, peptides and oligonucleotides for the treatment of colon related diseases has been the focus of increasing attention over the last years. However, the major disadvantage of these macromolecules is their degradation propensity in liquid state which can lead to the undesirable and complete loss of function. Therefore, to increase the stability of the biologic and reduce their degradation propensity, formulation techniques such as solidification can be performed to obtain a stable solid dosage form for oral administration.
View Article and Find Full Text PDFThe aim of this research was to use Raman spectroscopy for the in-line monitoring of the solid state of materials during pharmaceutical hot-melt extrusion in the die head of a 12 mm (development scale) twin-screw extruder during formulation development. A full factorial (mixed) design was generated to determine the influence of variations in concentration of Celecoxib (CEL) in Eudragit® E PO, three different screw configurations and varying barrel temperature profiles on the solid state, 'melt temperature' and die pressure of continuously produced extrudates in real-time. Off-line XRD and DSC analysis were used to evaluate the suitability of Raman spectroscopy for solid state predictions.
View Article and Find Full Text PDFJ Pharm Pharmacol
February 2014
Objectives: Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion.
View Article and Find Full Text PDFThe aim of the study is to increase the bioavailability of itraconazole (ITRA) using nanosized cocrystals prepared via wet milling of ITRA in combination with dicarboxylic acids. Wet milling was used in order to create a nanosuspension of ITRA in combination with dicarboxylic acids. After spray-drying and bead layering, solid state was characterized by MDSC, XRD, Raman and FT-IR.
View Article and Find Full Text PDFThe aim of this research was to improve understanding of material behavior in pharmaceutical hot-melt extrusion by implementing a Raman probe in each section of the barrel. Fourier-transform infrared spectroscopy measurements were performed to confirm the Raman observations. Metoprolol tartrate (MPT) concentration (10 and 40% in Eudragit RSPO), extrusion temperature (100, 120, and 140 °C), and screw speed (80 and 160 rpm) were varied to examine their influence on polymer-drug solid state throughout the barrel.
View Article and Find Full Text PDFThe aim was to evaluate near-infrared spectroscopy for the in-line determination of the drug concentration, the polymer-drug solid-state behaviour and molecular interactions during hot-melt extrusion. Kollidon® SR was extruded with varying metoprolol tartrate (MPT) concentrations (20%, 30% and 40%) and monitored using NIR spectroscopy. A PLS model allowed drug concentration determination.
View Article and Find Full Text PDFDuring the past years, pharmaceutical counterfeiting was mainly a problem of developing countries with weak enforcement and inspection programs. However, Europe and North America are more and more confronted with the counterfeiting problem. During this study, 26 counterfeits and imitations of Viagra® tablets and 8 genuine tablets of Viagra® were analysed by Raman microspectroscopy imaging.
View Article and Find Full Text PDF