Lysozymes represent important innate immune components against bacteria. In this study, Atlantic salmon (Salmo salar) goose (g-) and chicken (c-) types of lysozyme were subjected to protein characterisations and tissue expression analyses. Specific bacterial protein inhibitors of g- and c-type lysozymes were employed to discriminate between respective enzyme activities.
View Article and Find Full Text PDFLysozymes are key effectors of the animal innate immunity system that kill bacteria by hydrolyzing peptidoglycan, their major cell wall constituent. Recently, specific inhibitors of the three major lysozyme families occuring in the animal kingdom (c-, g- and i-type) have been discovered in Gram-negative bacteria, and it has been proposed that these may help bacteria to evade lysozyme mediated lysis during interaction with an animal host. Escherichia coli produces two inhibitors that are specific for c-type lysozyme (Ivy, Inhibitor of vertebrate lysozyme; MliC, membrane bound lysozyme inhibitor of c-type lysozyme), and one specific for g-type lysozyme (PliG, periplasmic lysozyme inhibitor of g-type lysozyme).
View Article and Find Full Text PDFPeptidoglycan is the major structural component of the bacterial cell wall. It provides resistance against turgor and its cleavage by hydrolases such as lysozymes results in bacteriolysis. Most, if not all, animals produce lysozymes as key effectors of their innate immune system.
View Article and Find Full Text PDFArabinoxylan-oligosaccharides (AXOS) are a newly discovered class of candidate prebiotics that exert different properties depending on their structure. In this study the effects of two different structures of AXOS, namely AXOS-32-0.30 (average degree of polymerization: 32, average degree of substitution: 0.
View Article and Find Full Text PDFThe goose-type lysozyme inhibitor PliG enhances the survival of Escherichia coli in goose but not in chicken egg white, which contains goose- and chicken-type lysozymes, respectively. These results indicate that both the type of host lysozyme and the type of bacterial lysozyme inhibitor may affect bacterium-host interactions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2011
The production of lysozyme inhibitors, competitively binding to the lysozyme active site, is a bacterial strategy to prevent the lytic activity of host lysozymes. Therefore, suppression of the lysozyme-inhibitor interaction is an interesting new approach for drug development since restoration of the bacterial lysozyme sensitivity will support bacterial clearance from the infected sites. Using molecular modelling techniques the interaction of the Salmonella PliC inhibitor with c-type lysozyme was studied and a protein-protein interaction based pharmacophore model was created.
View Article and Find Full Text PDFBacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns.
View Article and Find Full Text PDFThe Escherichia coli Rcs regulon is triggered by antibiotic-mediated peptidoglycan stress and encodes two lysozyme inhibitors, Ivy and MliC. We report activation of this pathway by lysozyme and increased lysozyme sensitivity when Rcs induction is genetically blocked. This lysozyme sensitivity could be alleviated by complementation with Ivy and MliC.
View Article and Find Full Text PDFA reverse zymogram method for the detection of bacterial lysozyme inhibitors was developed. This method was validated by using a periplasmic protein extract of Escherichia coli containing a known inhibitor and subsequently led to the detection of a new proteinaceous hen egg white lysozyme inhibitor in Proteus mirabilis.
View Article and Find Full Text PDFIvy is a lysozyme inhibitor that protects Escherichia coli against lysozyme-mediated cell wall hydrolysis when the outer membrane is permeabilized by mutation or by chemical or physical stress. In the current work, we have investigated whether Ivy is necessary for the survival or growth of E. coli MG1655 and Pseudomonas aeruginosa PAO1 in hen egg white and in human saliva and breast milk, which are naturally rich in lysozyme and in membrane-permeabilizing components.
View Article and Find Full Text PDFLysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria.
View Article and Find Full Text PDFWe have investigated the specificity of six different lysozymes for peptidoglycan substrates obtained by extraction of a number of gram-negative bacteria and Micrococcus lysodeikticus with chloroform/Tris-HCl buffer (chloroform/buffer). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). HEWL was much more effective on M.
View Article and Find Full Text PDFThe inactivation of Escherichia coli MG1655 by high-pressure homogenisation (HPH) at pressures ranging from 100 to 300 MPa was studied in buffered suspensions adjusted to different relative viscosities (1.0, 1.3, 1.
View Article and Find Full Text PDFThe inactivation of suspensions of Escherichia coli MG1655 by high-pressure homogenization was studied over a wide range of pressures (100-300 MPa) and initial temperatures of the samples (5-50 degrees C). Bacterial inactivation was positively correlated with the applied pressure and with the initial temperature. When samples were adjusted to different concentrations of poly(ethylene glycol) to have the same viscosity at different temperatures below 45 degrees C and then homogenized at these temperatures, no difference in inactivation was observed.
View Article and Find Full Text PDF