Neonatal intensive care unit (NICU), particularly in treating developmental and epileptic encephalopathy (DEE) and metabolic epilepsy (ME), requires a deep understanding of their complex etiologies and treatment responses. After excluding treatable cases such as infectious or autoimmune encephalitis, our focus shifted to a more challenging subgroup of 59 patients for in-depth genetic analysis using exome sequencing (ES). The ES analysis identified 40 genetic abnormalities, significantly including de novo variants.
View Article and Find Full Text PDFN-terminal cysteine oxidases (NCOs) use molecular oxygen to oxidise the amino-terminal cysteine of specific proteins, thereby initiating the proteolytic N-degron pathway. To expand the characterisation of the plant family of NCOs (plant cysteine oxidases [PCOs]), we performed a phylogenetic analysis across different taxa in terms of sequence similarity and transcriptional regulation. Based on this survey, we propose a distinction of PCOs into two main groups.
View Article and Find Full Text PDFPlants need to attune their stress responses to the ongoing developmental programmes to maximize their efficacy. For instance, successful submergence adaptation is often associated with a delicate balance between saving resources and their expenditure to activate measures that allow stress avoidance or attenuation. We observed a significant decrease in submergence tolerance associated with ageing in Arabidopsis thaliana, with a critical step between 2 and 3 weeks of post-germination development.
View Article and Find Full Text PDFEthanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD+. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far.
View Article and Find Full Text PDFPlant adaptation to hypoxic conditions is mediated by the transcriptional activation of genes involved in the metabolic reprogramming of plant cells to cope with reduced oxygen availability. Recent studies indicated that members of the group VII of the Ethylene Responsive Transcription Factor (ERFs) family act as positive regulators of this molecular response. In the current study, the five ERF-VII transcription factors of Arabidopsis thaliana were compared to infer a hierarchy in their role with respect to the anaerobic response.
View Article and Find Full Text PDF