Vigor reflects how motivated people are to respond to stimuli. We previously showed that, on average, humans are more vigorous when a higher rate of reward is available, and that this relationship is modulated by the dopamine precursor levodopa. Dopamine signaling and probabilistic reward learning deteriorate across the adult life span, and thus, the relationship between vigor and reward may also change in aging.
View Article and Find Full Text PDFPast research has shown that attributions of intentions to other's actions determine how we experience these actions and their consequences. Yet, it is unknown how such attributions affect our learning and memory. Addressing this question, we combined neuroimaging with an interactive threat learning paradigm in which two interaction partners (confederates) made choices that had either threatening (shock) or safe (no shock) consequences for the participants.
View Article and Find Full Text PDFDopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts.
View Article and Find Full Text PDFWith increasing age, functional connectomes become dissimilar across normal individuals, reflecting heterogenous aging effects on functional connectivity (FC). We investigated the distribution of these effects across the connectome and their relationship with age-related differences in dopamine (DA) D1 receptor availability and gray matter density (GMD). With this aim, we determined aging effects on mean and interindividual variance of FC using fMRI in 30 younger and 30 older healthy subjects and mapped the contribution of each connection to the patterns of age-related similarity loss.
View Article and Find Full Text PDFLearning to act to receive reward and to withhold to avoid punishment has been found to be easier than learning the opposite contingencies in young adults. To what extent this type of behavioral adaptation might develop during childhood and adolescence and differ during aging remains unclear. We therefore tested 247 healthy individuals across the human life span (7-80 years) with an orthogonalized valenced go/no-go learning task.
View Article and Find Full Text PDFProbabilistic reward learning reflects the ability to adapt choices based on probabilistic feedback. The dopaminergically innervated corticostriatal circuit in the brain plays an important role in supporting successful probabilistic reward learning. Several components of the corticostriatal circuit deteriorate with age, as it does probabilistic reward learning.
View Article and Find Full Text PDFChoosing actions that result in advantageous outcomes is a fundamental function of nervous systems. All computational decision-making models contain a mechanism that controls the variability of (or confidence in) action selection, but its neural implementation is unclear-especially in humans. We investigated this mechanism using two influential decision-making frameworks: active inference (AI) and reinforcement learning (RL).
View Article and Find Full Text PDFPavlovian biases influence instrumental learning by coupling reward seeking with action invigoration and punishment avoidance with action suppression. Using a probabilistic go/no-go task designed to orthogonalize action (go/no-go) and valence (reward/punishment), recent studies have shown that the interaction between the two is dependent on the striatum and its key neuromodulator dopamine. Using this task, we sought to identify how structural and neuromodulatory age-related differences in the striatum may influence Pavlovian biases and instrumental learning in 25 young and 31 older adults.
View Article and Find Full Text PDFLearning to act to obtain reward and inhibit to avoid punishment is easier compared with learning the opposite contingencies. This coupling of action and valence is often thought of as a Pavlovian bias, although recent research has shown it may also emerge through instrumental mechanisms. We measured this learning bias with a rewarded go/no-go task in 60 adults of different ages.
View Article and Find Full Text PDFProbabilistic reward learning is characterised by individual differences that become acute in aging. This may be due to age-related dopamine (DA) decline affecting neural processing in striatum, prefrontal cortex, or both. We examined this by administering a probabilistic reward learning task to younger and older adults, and combining computational modelling of behaviour, fMRI and PET measurements of DA D1 availability.
View Article and Find Full Text PDFBackground: Several aspects of volitional control of action may be relevant in the pathophysiology of impulsive-compulsive behaviours (ICB) in Parkinson's disease (PD). We aimed to explore multiple aspects of action control, assessing reward-related behaviour, inhibition (externally and internally triggered) and sense of agency in PD patients, with and without ICB compared to healthy subjects.
Methods: Nineteen PD patients with ICB (PD-ICB), 19 PD without ICB (PD-no-ICB) and 19 healthy controls (HC) underwent a battery of tests including: Intentional Binding task which measures sense of agency; Stop Signal Reaction Time (SSRT) measuring capacity for reactive inhibition; the Marble task, assessing intentional inhibition; Balloon Analog Risk Task for reward sensitivity.
Psychological characterisation of sensory systems often focusses on minimal units of perception, such as thresholds, acuity, selectivity and precision. Research on how these units are aggregated to create integrated, synthetic experiences is rarer. We investigated mechanisms of somatosensory integration by asking volunteers to judge the total intensity of stimuli delivered to two fingers simultaneously.
View Article and Find Full Text PDFAlthough reward is known to enhance memory for reward-predicting events, the extent to which such memory effects spread to associated (neutral) events is unclear. Using a between-subject design, we examined how sharing a background context with rewarding events influenced memory for motivationally neutral events (tested after a 5 days delay). We found that sharing a visually rich context with rewarding objects during encoding increased the probability that neutral objects would be successfully recollected during memory test, as opposed to merely being recognized without any recall of associative detail.
View Article and Find Full Text PDFOral somatosensory awareness refers to the somatic sensations arising within the mouth, and to the information these sensations provide about the state and structure of the mouth itself, and objects in the mouth. Because the oral tissues have a strong somatosensory innervation, they are the locus of some of our most intense and vivid bodily experiences. The salient pain of toothache, or the habit of running one's tongue over one's teeth when someone mentions "dentist", provide two very different indications of the power of oral somatosensory awareness in human experience and behaviour.
View Article and Find Full Text PDF