Ying Yong Sheng Tai Xue Bao
November 2023
The Qinghai-Tibet Plateau is the key and largest ecological hotspot globally with enormous multiple ecosystem services. The vast and unique alpine ecosystems in this area have been subjected to the increased human disturbances, such as intensified land use. To explore the magnitude, spatiotemporal pattern and transformation process of land use in the Qinghai-Tibet Plateau and their impacts on the major ecosystem services during 1980-2020, we used the Integrated Valuation of Ecosystem Services and Trade-offs model to simulate the spatiotemporal variations of three types of ecosystem services, including habitat quality, carbon storage, and water yield.
View Article and Find Full Text PDFCoastal wetlands have been enclosed by thousands of kilometers of seawalls in China to obtain extra land for rapid socio-economic development in the coastal region. Although understanding seawall-induced impacts on delta wetlands and their ecosystem can provide valuable decision-making information to support coastal management, quantifying and measuring long-term, cumulative ecological impacts of harden seawall under sea level rise (SLR) remains a vital research gap. In this study, by combining the land-use transformation trajectory analysis, ecosystem services assessment, and the SLAMM (Sea Level Affecting Marshes Model), we have explored the seawall-induced effects on temporal-spatial dynamics of tidal wetlands and the Coastal Blue Carbon storage (CBCs) in the Yellow River Delta (YRD) under the SLR by 2050 and 2100.
View Article and Find Full Text PDF