Publications by authors named "Liegeois-Chauvel C"

In cognitive psychology, research on attention is shifting from focusing primarily on how people orient toward stimuli in the environment toward instead examining how people orient internally toward memory representations. With this new shift the question arises: What factors in the environment send attention inward? A recent proposal is that one factor is cue familiarity-detection (Cleary, Irving & Mills, Cognitive Science, 47, e13274, 2023). Within this theoretical framework, we reinterpret a decades-old empirical pattern-a primacy effect in memory for repetitions-in a novel way.

View Article and Find Full Text PDF

The current standard model of language production involves a sensorimotor dorsal stream connecting areas in the temporo-parietal junction with those in the inferior frontal gyrus and lateral premotor cortex. These regions have been linked to various aspects of word production such as phonological processing or articulatory programming, primarily through neuropsychological and functional imaging group studies. Most if not all the theoretical descriptions of this model imply that the same network should be identifiable across individual speakers.

View Article and Find Full Text PDF

Intracranial EEG (iEEG) performed during the pre-surgical evaluation of refractory epilepsy provides a great opportunity to investigate the neurophysiology of human cognitive functions with exceptional spatial and temporal precisions. A difficulty of the iEEG approach for cognitive neuroscience, however, is the potential variability across patients in the anatomical location of implantations and in the functional responses therein recorded. In this context, we designed, implemented, and tested a user-friendly and efficient open-source toolbox for Multi-Patient Intracranial data Analysis (MIA), which can be used as standalone program or as a Brainstorm plugin.

View Article and Find Full Text PDF

Illusions of inappropriate familiarity with the current experience or hallucinatory recall of memories are reported in temporal lobe seizures. Pathophysiological hypotheses have been proposed, involving temporal limbic regions (Hughlings-Jackson), temporal neocortex ("interpretive cortex", Penfield), or both (Bancaud). Recent data acquired from presurgical investigations using intracerebral electrode recordings, demonstrate a critical role for the sub- and para-hippocampal cortices.

View Article and Find Full Text PDF

The posterior part of the superior temporal gyrus (STG) has long been known to be a crucial hub for auditory and language processing, at the crossroad of the functionally defined ventral and dorsal pathways. Anatomical studies have shown that this "auditory cortex" is composed of several cytoarchitectonic areas whose limits do not consistently match macro-anatomic landmarks like gyral and sulcal borders. The only method to record and accurately distinguish neuronal activity from the different auditory sub-fields of primary auditory cortex, located in the tip of Heschl and deeply buried in the Sylvian fissure, is to use stereotaxically implanted depth electrodes (Stereo-EEG) for pre-surgical evaluation of patients with epilepsy.

View Article and Find Full Text PDF

A crucial element of the surgical treatment of medically refractory epilepsy is to delineate cortical areas that must be spared in order to avoid clinically relevant neurological and neuropsychological deficits postoperatively. For each patient, this typically necessitates determining the language lateralization between hemispheres and language localization within hemisphere. Understanding cortical language systems is complicated by two primary challenges: the extent of the neural tissue involved and the substantial variability across individuals, especially in pathological populations.

View Article and Find Full Text PDF

Neural oscillations in auditory cortex are argued to support parsing and representing speech constituents at their corresponding temporal scales. Yet, how incoming sensory information interacts with ongoing spontaneous brain activity, what features of the neuronal microcircuitry underlie spontaneous and stimulus-evoked spectral fingerprints, and what these fingerprints entail for stimulus encoding, remain largely open questions. We used a combination of human invasive electrophysiology, computational modeling and decoding techniques to assess the information encoding properties of brain activity and to relate them to a plausible underlying neuronal microarchitecture.

View Article and Find Full Text PDF

Speech perception is mediated by both left and right auditory cortices but with differential sensitivity to specific acoustic information contained in the speech signal. A detailed description of this functional asymmetry is missing, and the underlying models are widely debated. We analyzed cortical responses from 96 epilepsy patients with electrode implantation in left or right primary, secondary, and/or association auditory cortex (AAC).

View Article and Find Full Text PDF

In the natural environment, attended sounds tend to be perceived much better than unattended sounds. However, the physiological mechanism of how our neural systems direct the state of perceptual attention to prepare for the detection of upcoming acoustic stimuli before auditory stream segregation remains elusive. In this study, based on the direct intracerebral recordings from the auditory cortex in eight epileptic patients with refractory focal seizures, we investigated the neural processing of auditory attention by comparing the local field potentials before 'attentional' and 'distracted' conditions.

View Article and Find Full Text PDF

Language production requires that semantic representations are mapped to lexical representations on the basis of the ongoing context to select the appropriate words. This mapping is thought to generate two opposing phenomena, "semantic priming," where multiple word candidates are activated, and "interference," where these word activities are differentiated to make a goal-relevant selection. In previous neuroimaging and neurophysiological research, priming and interference have been associated to activity in regions of a left frontotemporal network.

View Article and Find Full Text PDF

Language is mediated by pathways connecting distant brain regions that have diverse functional roles. For word production, the network includes a ventral pathway, connecting temporal and inferior frontal regions, and a dorsal pathway, connecting parietal and frontal regions. Despite the importance of word production for scientific and clinical purposes, the functional connectivity underlying this task has received relatively limited attention, and mostly from techniques limited in either spatial or temporal resolution.

View Article and Find Full Text PDF

Objectives: Ictal language disturbances may occur in dominant hemisphere temporal lobe epilepsy (TLE), but little is known about the precise anatomoelectroclinical correlations. This study investigated the different facets of ictal aphasia in intracerebrally recorded TLE.

Methods: Video-stereoelectroencephalography (SEEG) recordings of 37 seizures in 17 right-handed patients with drug-resistant TLE were analyzed; SEEG electroclinical correlations between language disturbance and involvement of temporal lobe structures were assessed.

View Article and Find Full Text PDF

Although motor control has been extensively studied, most research involving neural recordings has focused on primary motor cortex, pre-motor cortex, supplementary motor area, and cerebellum. These regions are involved during normal movements, however, associative cortices and hippocampus are also likely involved during perturbed movements as one must detect the unexpected disturbance, inhibit the previous motor plan, and create a new plan to compensate. Minimal data is available on these brain regions during such "robust" movements.

View Article and Find Full Text PDF

We provide a quantitative assessment of the parallel-processing hypothesis included in various language-processing models. First, we highlight the importance of reasoning about cognitive processing at the level of single trials rather than using averages. Then, we report the results of an experiment in which the hypothesis was tested at an unprecedented level of granularity with intracerebral data recorded during a picture-naming task.

View Article and Find Full Text PDF

The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks).

View Article and Find Full Text PDF

Picture naming is a standard task used to probe language processes in healthy and impaired speakers. It recruits a broad neural network of language related areas, among which the hippocampus is rarely included. However, the hippocampus could play a role during picture naming, subtending, for example, implicit learning of the links between pictured objects and their names.

View Article and Find Full Text PDF

The fact that feed-forward and top-down propagation of sensory information use distinct frequency bands is an appealing assumption for which evidence remains scarce. Here we obtain human depth recordings from two auditory cortical regions in both hemispheres, while subjects listen to sentences, and show that information travels in each direction using separate frequency channels. Bottom-up and top-down propagation dominates in γ- and δ-β (<40 Hz) bands, respectively.

View Article and Find Full Text PDF

Music is a sound structure of remarkable acoustical and temporal complexity. Although it cannot denote specific meaning, it is one of the most potent and universal stimuli for inducing mood. How the auditory and limbic systems interact, and whether this interaction is lateralized when feeling emotions related to music, remains unclear.

View Article and Find Full Text PDF

Access to an object's name requires the retrieval of an arbitrary association between it's identity and a word-label. The hippocampus is essential in retrieving arbitrary associations, and thus could be involved in retrieving the link between an object and its name. To test this hypothesis we recorded the iEEG signal from epileptic patients, directly implanted in the hippocampus, while they performed a picture naming task.

View Article and Find Full Text PDF

Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal.

View Article and Find Full Text PDF

Electroencephalography (EEG), magnetoencephalography (MEG), and intracerebral stereotaxic EEG (SEEG) are the three neurophysiological recording techniques, which are thought to capture the same type of brain activity. Still, the relationships between non-invasive (EEG, MEG) and invasive (SEEG) signals remain to be further investigated. In early attempts at comparing SEEG with either EEG or MEG, the recordings were performed separately for each modality.

View Article and Find Full Text PDF

A common strategy to reveal the components of the speech production network is to use psycholinguistic manipulations previously tested in behavioral protocols. This often disregards how implementation aspects that are nonessential for interpreting behavior may affect the neural response. We compared the electrophysiological (EEG) signature of two popular picture naming protocols involving either unfamiliar pictures without repetitions or repeated familiar pictures.

View Article and Find Full Text PDF

The capacity to evaluate the outcomes of our actions is fundamental for adapting and optimizing behavior and depends on an action-monitoring system that assesses ongoing actions and detects errors. The neuronal network underlying this executive function, classically attributed to the rostral cingulate zone, is poorly characterized in humans, owing to the limited number of direct neurophysiological data. Using intracerebral recordings, we show that the leading role is played by the supplementary motor area (SMA), which rapidly evaluates successful and erroneous actions.

View Article and Find Full Text PDF

Background: Obsessive-compulsive disorder (OCD) is associated with visuospatial working memory deficits. Intolerance of uncertainty is thought to be a core component of OCD symptoms. Recent findings argue for a possible relationship between abilities in visuospatial memory and uncertainty.

View Article and Find Full Text PDF

Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream).

View Article and Find Full Text PDF