Triple-negative breast cancer (TNBC) is a highly invasive and metastatic subtype of breast cancer that often recurs after surgery. Herein, we developed a cyclodextrin-based tumor-targeted nano delivery system that incorporated the photosensitizer chlorin e6 (Ce6) and the chemotherapeutic agent lonidamine (LND) to form the R6RGD-CMβCD-se-se-Ce6/LND nanoparticles (RCC/LND NPS). This nanosystem could target cancer cells, avoid lysosomal degradation and further localize within the mitochondria.
View Article and Find Full Text PDFIntroduction: Tumor hypoxia and invasion present significant challenges for the efficacy of photodynamic therapy (PDT) in triple-negative breast cancer (TNBC). This study developed a mitochondrial targeting strategy that combined PDT and gene therapy to promote each other and address the challenges.
Methods: The positively charged amphiphilic material triphenylphosphine-tocopherol polyethylene glycol succinate (TPP-TPGS, TPS) and the photosensitizer chloride e6 (Ce6) formed TPS@Ce6 nanoparticles (NPs) by hydrophobic interaction.
Introduction: Mitochondria are a significant target of lonidamine (LND). However, its limited solubility and inability to specifically target mitochondria, LND can lead to hepatic toxicity and has shown only modest anticancer activity. The objective of this study is to establish a glutathione programmed mitochondria targeted delivery of LND for the effective treatment of triple negative breast cancer (TNBC).
View Article and Find Full Text PDFHerein, a cyclodextrin derivative (R6RGD-CMβCD) with tumor target and a carboxymethyl chitosan derivative (M2pep-CMCS) with tumor-associated macrophages 2 (TAM2) target were successfully synthesized, respectively. DOX-loaded nanoparticles (R6RGD-CMβCD@DOX NPs, RCNP) and R848-loaded nanoparticles (M2pep-CMCS@R848 NPs, MCNP) were prepared. Furthermore, the RCNP and MCNP exhibited good DOX and R848 absorption.
View Article and Find Full Text PDFRadiotherapy has been widely applied for breast cancer treatment in the clinic, while improving the radiation sensitivity of tumors and protecting normal tissues from radiation damage has drawn considerable attention. In this study, we reported a biomimetic multifunctional nanozyme (BSA@CeO/Fe), which can be used as a radiosensitizer for breast cancer treatment. It was demonstrated that BSA@CeO/Fe presented a pH dependent multiple enzyme like activity that enhances the hydroxyl radical level by cascade catalytic reactions in a tumor microenvironment to obtain a desirable tumor-suppression rate (83.
View Article and Find Full Text PDFHerein, a pH-responsive cyclodextrin derivative (R6H4-CMβCD) with cell-penetrating ability was successfully synthesized, and curcumin-loaded nanoparticles (R6H4-CMβCD@CUR NPs, RCCNPs) were developed to improve its efficacy in hepatoma. RCCNPs could improve the cell uptake compared with CMβCD@CUR NPs (CCNPs) and were internalized into cells mainly through endocytosis mediated by reticulin and macropinocytosis. Furthermore, the accumulation of RCCNPs in hepatoma cells at pH 6.
View Article and Find Full Text PDFPurpose: Hepatocellular carcinoma (HCC) is a common malignant tumor that seriously threatens human life and health. Currently, the majority of antitumor drugs are administered in an injectable manner, which can cause pain and side effects to patients. Objective of this study is to establish an effective oral drug delivery system for anti hepatoma drugs.
View Article and Find Full Text PDFIn this study, a cyclodextrin derivative (R6RGD-CMCD) nanoparticle with tumor targeting and cell penetration ability was successfully synthesized and loaded with tyroserleutide (YSL) to obtain YSL-loaded nanoparticles (YSL/R6RGD-CMCD NPs). The characterization of these NPs revealed a smooth surfaces and an average diameter of approximately 170 nm. YSL/R6RGD-CMCD NPs increased the NP uptake in Caco-2 cells.
View Article and Find Full Text PDFThe aim of the study is to design octaarginine (R8)-modified insulin-alginate nanoparticles (INS-SA/R8 NPs) as the oral insulin delivery system, and further investigate its penetrating mechanism. The characterization results indicated that the surface of INS-SA/R8 NPs was smooth and the average diameter was about 300 nm. INS-SA/R8 NPs exhibited a stronger stability in the simulated gastrointestinal fluids and had a better controlled release than unmodified alginate nanoparticles (INS-SA NPs).
View Article and Find Full Text PDFIn this study, the cyclodextrin polypeptide (R8-CMβCD) was successfully synthesized by the conjugation of a cell-penetrating peptide (R8) with carboxymethyl-β-cyclodextrin (CMβCD) via the carbon diamine reaction. Then, paclitaxel-loaded nanoparticles (PTX@R8-CMβCD NPs) was prepared. Results of transmission electron microscopy (TEM) showed that PTX@R8-CMβCD NPs were spherical with smooth surfaces and an average diameter about 144 nm.
View Article and Find Full Text PDFBioactive collagen/chitosan complexes were prepared by an ion crosslinking method using fish skin collagen and chitosan solution as raw materials. Scanning electron microscopy observation confirmed that the collagen/chitosan complexes were of a uniform spherical shape and uniform particle size. The complexes were stable at different pH values for a certain period of time through swelling experiments.
View Article and Find Full Text PDFObjectives: To increase the solubility of baicalein (BAI) by preparing BAI-micelles (BAI-M) with Solutol HS15 (HS15) and Poloxamer 188 (F68), thereby improving its oral bioavailability.
Methods: Baicalein micelles were prepared with HS15 and F68 by thin-film dispersion method and optimized by central composite design (CCD) approach. Physicochemical, in vitro release, Caco-2 cell transport and pharmacokinetic studies of BAI-M were performed.
Int J Biol Macromol
February 2019
In this study, the collagen/chitosan gel composite supplemented with a cell-penetrating peptide (CPP) (Oligoarginine, R8) was prepared. Then, the physicochemical properties of the new collagen/chitosan/CPPs gel obtained were analyzed and the related characteristics were evaluated by scanning electron microscopy (SEM), fourier transform infrared (FTIR), differential scanning calorimetry (DSC), differential thermal analyzer (DTA). Furthermore, we found that collagen/chitosan/CPPs gel composite was capable of inhibiting Staphylococcus aureus growth and had good ability to heal wounds.
View Article and Find Full Text PDFIn this study, a cell-penetrating peptide conjugate, R8-carboxymethyl-β-cyclodextrin (R8-CM-β-CD), was synthesized, and then we prepared the supramolecular complex (insulin/R8-CM-β-CD). The physicochemical properties of the complex were characterized. The supramolecular complex could facilitate the uptake of insulin, meanwhile, induce a significantly higher internalization of insulin.
View Article and Find Full Text PDFTo overcome barriers for oral delivery of insulin, the chitosan(CS)-based nanocarriers with a novel cell penetrating peptide (SAR6EW) have been prepared and evaluated in this study. Characterization measurements showed that SAR6EW/CS/insulin-NPs displayed global particles with smooth surfaces and an average diameter about 150nm. The entrapment efficiency and loading rates of insulin were 75.
View Article and Find Full Text PDFArginine octamer (R8) and its derivatives were developed in this study for the enhanced mucosal permeation of insulin. R8 was substituted with different aminos, then modified with stearic acid (SA). We found that the SAR6EW-insulin complex had stronger intermolecular interactions and higher complex stability.
View Article and Find Full Text PDFOur previous investigations have demonstrated that microinjection of acetylcholine (ACh) or muscarinic ACh receptor activation in the cerebellar cortex induces a systemic blood pressure depressor response. This study aimed to determine the role of muscarinic ACh receptor-2 (M2 receptor) in the cerebellar cortex in cardiovascular function regulation in rats. A nonselective muscarinic receptor agonist (oxotremorine M, OXO; 30 mM), a selective M2 receptor agonist (arecaidine but-2-ynyl ester tosylate, ABET; 3, 10, and 30 mM), 30 mM OXO mixed with a selective M2 receptor antagonist (methoctramine hydrate, MCT; 0.
View Article and Find Full Text PDFIn this paper, we describe the synthesis and testing of a novel β-cyclodextrin derivative, carboxymethy-hydroxypropyl-β-cyclodextrin (CM-HP-β-CD). After synthesis, we verified that carboxymethyl and hydroxypropyl groups were successfully substituted onto β-cyclodextrin to form CM-HP-β-CD. Then, we performed in vitro experiments to investigate (1) the ability of CM-HP-β-CD to bind insulin, (2) the transportation of insulin-CM-HP-β-CD complexes across a Caco-2 cell monolayer, and (3) the cytotoxicity of CM-HP-β-CD.
View Article and Find Full Text PDFEffects of Fe-chlorophyllin on the growth of wheat root were investigated in this study. We found that Fe-chlorophyllin can promote root growth. The production of nitric oxide in wheat root was detected using DAF-2DA fluorescent emission.
View Article and Find Full Text PDFThe objective of this study was to elucidate the effects of hydroxylpropyl-beta-cyclodextrin (HP-beta-CD) on the in vitro stability of insulin. It was found that HP-beta-CD had positive effects on the stability of insulin in acid and base and under high temperature conditions. Furthermore, use of HP-beta-CD could also increase the stability of disulfide bonds which are important to the conformation of insulin.
View Article and Find Full Text PDFDegradation of insulin was studied in this work. Casein and protamine could obviously suppress degradation of insulin by intestinal enzymes, and could protect insulin from degradation by the mechanism of competition and combination with proteolysis enzyme. What is more, co-incubated with HP-beta-CD-casein or HP-beta-CD-protamine, most insulin was protected from degradation by intestinal enzymes.
View Article and Find Full Text PDFThe degradation of large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in wheat (Triticum aestivum L. cv. Yangmai 158) leaves was studied.
View Article and Find Full Text PDFZhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao
October 2006
The role of serine endopeptidase in cucumber leaf senescence was studied by using the inhibitor of serine endopeptidase and plant growth regulators (6-BA and ABA) on darkness-induced cucumber leaves. The results showed that the senescence of cucumber leaves were delayed by AEBSF [4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride], an inhibitor of serine-type endopeptidase, or 6-BA treatment. The chlorophyll contents increased by AEBSF (Fig.
View Article and Find Full Text PDF