Publications by authors named "Liedke M"

Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Objective: To describe the evolution of management strategies for neuroendocrine liver metastases (NE LM) and trends in patient outcomes over the preceding 3 decades.

Summary Background Data: Liver metastases are common in neuroendocrine neoplasms and impair prognosis. A broad therapeutic armamentarium has evolved over recent decades but there remains uncertainty regarding optimal treatment selection and sequencing.

View Article and Find Full Text PDF

This study is the first one that investigates in detail the bacterial intercellular response to the high density of crystallographic defects including vacancies created in Cu by high pressure torsion. To this aim, samples were deformed by high pressure torsion and afterward, their antibacterial properties against Staphylococcus aureus were analyzed in adhesion tests. As a reference an annealed sample was applied.

View Article and Find Full Text PDF

Methylammonium lead tribromide (MAPbBr) stands out as the most easily grown wide-band-gap metal halide perovskite. It is a promising semiconductor for room-temperature gamma-ray (γ-ray) spectroscopic detectors, but no operational devices are realized. This can be largely attributed to a lack of understanding of point defects and their influence on detector performance.

View Article and Find Full Text PDF

LiMnO (LMO) cathodes present large stability when cycled in aqueous electrolytes, contrasting with their behavior in conventional organic electrolytes in lithium-ion batteries (LIBs). To elucidate the mechanisms underlying this distinctive behavior, we employ unconventional characterization techniques, including variable energy positron annihilation lifetime spectroscopy (VEPALS), tip-enhanced Raman spectroscopy (TERS), and macro-Raman spectroscopy (with tens of μm-size laser spot). These still rather unexplored techniques in the battery field provide complementary information across different length scales, revealing previously hidden features.

View Article and Find Full Text PDF

The effect of annealing temperature on the microstructure, defects and optical properties of ZnO thin films are investigated using sol-gel based spin coating method for a range of annealing temperatures from 200C to 500C. The correlation among the microstructure, defects, impurity content and the optical band gap of films of thickness about 10-12 nm is elucidated. The particle size increases and the optical band gap reduces with the annealing temperature.

View Article and Find Full Text PDF

Direct-band-gap Germanium-Tin alloys (GeSn) with high carrier mobilities are promising materials for nano- and optoelectronics. The concentration of open volume defects in the alloy, such as Sn and Ge vacancies, influences the final device performance. In this article, we present an evaluation of the point defects in molecular-beam-epitaxy grown GeSnfilms treated by post-growth nanosecond-range pulsed laser melting (PLM).

View Article and Find Full Text PDF

Flash lamp annealing (FLA) with millisecond pulse durations is reported as a novel curing method for pore precursor's degradation in thin films. A case study on the curing of dielectric thin films is presented. FLA-cured films are being investigated by means of positron annihilation spectroscopy (PAS) and Fourier-transform infrared (FTIR) spectroscopy in order to quantify the nm-scale porosity and post-treatment chemistry, respectively.

View Article and Find Full Text PDF

Magneto-ionics refers to the control of magnetic properties of materials through voltage-driven ion motion. To generate effective electric fields, either solid or liquid electrolytes are utilized, which also serve as ion reservoirs. Thin solid electrolytes have difficulties in (i) withstanding high electric fields without electric pinholes and (ii) maintaining stable ion transport during long-term actuation.

View Article and Find Full Text PDF

Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of CrO.

View Article and Find Full Text PDF

A set of GaN layers prepared by metalorganic vapor phase epitaxy under different technological conditions (growth temperature carrier gas type and Ga precursor) were investigated using variable energy positron annihilation spectroscopy (VEPAS) to find a link between technological conditions, GaN layer properties, and the concentration of gallium vacancies (V). Different correlations between technological parameters and V concentration were observed for layers grown from triethyl gallium (TEGa) and trimethyl gallium (TMGa) precursors. In case of TEGa, the formation of V was significantly influenced by the type of reactor atmosphere (N or H), while no similar behaviour was observed for growth from TMGa.

View Article and Find Full Text PDF

Cuprous oxide (CuO) is a promising p-type semiconductor material for many applications. So far, the lowest resistivity values are obtained for films deposited by physical methods and/or at high temperatures (~1000 °C), limiting their mass integration. Here, CuO thin films with ultra-low resistivity values of 0.

View Article and Find Full Text PDF

Extending the potential window toward the 3 V plateau below the typically used range could boost the effective capacity of LiMnO spinel cathodes. This usually leads to an "overdischarge" of the cathode, which can cause severe material damage due to manganese dissolution into the electrolyte and a critical volume expansion (induced by Jahn-Teller distortions). As those factors determine the stability and cycling lifetime for all-solid-state batteries, the operational window of LiMnO is usually limited to 3.

View Article and Find Full Text PDF

Ion intercalation of perovskite oxides in liquid electrolytes is a very promising method for controlling their functional properties while storing charge, which opens up its potential application in different energy and information technologies. Although the role of defect chemistry in oxygen intercalation in a gaseous environment is well established, the mechanism of ion intercalation in liquid electrolytes at room temperature is poorly understood. In this study, the defect chemistry during ion intercalation of LaSrFeO thin films in alkaline electrolytes is studied.

View Article and Find Full Text PDF

Thin films of the magnetoelectric insulator α-Cr O are technologically relevant for energy-efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr O films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small-volume defects and their complexes is studied on the magnetic properties of Cr O thin films.

View Article and Find Full Text PDF

The effect ofannealing is investigated in GdCaMnO(GCMO) thin films in oxygen and vacuum atmospheres. We show that the reduction of oxygen content in GCMO lattice by vacuum annealing induced more oxygen complex vacancies in both subsurface and interface regions and larger grain domains when compared with the pristine one. Consequently, the double exchange interaction is suppressed and the metallic-ferromagnetic state below Curie temperature turned into spin-glass insulating state.

View Article and Find Full Text PDF

The interplay of structure, composition and electrical conductivity was investigated for Fe-doped SrTiO thin films prepared by pulsed laser deposition. Structural information was obtained by reciprocal space mapping while solution-based inductively-coupled plasma optical emission spectroscopy and positron annihilation lifetime spectroscopy were employed to reveal the cation composition and the predominant point defects of the thin films, respectively. A severe cation non-stoichiometry with Sr vacancies was found in films deposited from stoichiometric targets.

View Article and Find Full Text PDF

Magneto-ionics allows for tunable control of magnetism by voltage-driven transport of ions, traditionally oxygen or lithium and, more recently, hydrogen, fluorine, or nitrogen. Here, magneto-ionic effects in single-layer iron nitride films are demonstrated, and their performance is evaluated at room temperature and compared with previously studied cobalt nitrides. Iron nitrides require increased activation energy and, under high bias, exhibit more modest rates of magneto-ionic motion than cobalt nitrides.

View Article and Find Full Text PDF

Neuroendocrine tumours (NET) of the small bowel present significant clinical challenges, such as their rate of metastasis at initial presentation, common multifocality and understaging even with gold standard imaging. Here, we present a case of a high-risk surgical patient with a complex medical history initially presenting as an acute abdomen due to an incarcerated incisional hernia. He was found at emergency laparotomy to have three small NET deposits in a 30-cm segment of incarcerated ileum which was resected.

View Article and Find Full Text PDF

Alumina thin films are synthesized by combustion synthesis of mixtures of aluminium nitrate (ALN) and methylcarbazate (MCZ). The interdependence of the ratio of oxidizer and reducing agent on composition, microstructure and electronic properties of the resulting oxide layers is investigated. The dielectric and insulating behaviour is improved by addition of different amounts of MCZ (MCZ : ALN = 0.

View Article and Find Full Text PDF

The excess energy emitted during the positronium (Ps) formation in condensed matter may be released as light. Spectroscopic analysis of this light can be a new method of studying the electronic properties of materials. We report the first experimental attempt, according to our knowledge, to verify the existence of this emission process.

View Article and Find Full Text PDF

The effect ofoxygen and vacuum annealings on the low bandwidth manganite GdCaMnO(GCMO) thin film with= 0.4 was investigated. Based on the magnetic measurements, the AFM-FM coupling is suppressed by the vacuum annealing treatment via destroying the double exchange interaction and increasing the unit cell volume by converting the Mnto the Mn.

View Article and Find Full Text PDF

Background:  The objective was to compare computed tomography (CT)-guided thoracic sympathicolysis (CTSy) and video-assisted thoracoscopic sympathectomy (VATS) with regard to their feasibility, the occurrence of minor and major complications, and the clinical outcome.

Materials And Methods:  In this study, 88 patients treated by CTSy and 86 patients treated by VATS were retrospectively included. CTSy was performed after establishing the entry plane below the level of the intervertebral space T2/3 via a dorsolateral approach using a 22-G coaxial needle.

View Article and Find Full Text PDF

Invited for the cover of this issue is Jörg J. Schneider and co-workers at Technical University Darmstadt, Helmholtz-Zentrum Dresden-Rossendorf and KIT Karlsruhe. The image depicts the application of high energy generated electron/positron couples which are able to detect defects sites in semiconducting zinc oxide thin films.

View Article and Find Full Text PDF

Machine learning is changing how we design and interpret experiments in materials science. In this work, we show how unsupervised learning, combined with random structure searching, improves our understanding of structural metastability in multicomponent alloys. We focus on the case of Al-O-N alloys where the formation of aluminum vacancies in wurtzite AlN upon the incorporation of substitutional oxygen can be seen as a general mechanism of solids where crystal symmetry is reduced to stabilize defects.

View Article and Find Full Text PDF