Perfectly rational decision making is almost always out of reach for people because their computational resources are limited. Instead, people may rely on computationally frugal heuristics that usually yield good outcomes. Although previous research has identified many such heuristics, discovering good heuristics and predicting when they will be used remains challenging.
View Article and Find Full Text PDFBackground: Many people want to build good habits to become healthier, live longer, or become happier but struggle to change their behavior. Gamification can make behavior change easier by awarding points for the desired behavior and deducting points for its omission.
Objective: In this study, we introduced a principled mathematical method for determining how many points should be awarded or deducted for the enactment or omission of the desired behavior, depending on when and how often the person has succeeded versus failed to enact it in the past.
We study human performance in two classical NP-hard optimization problems: Set Cover and Maximum Coverage. We suggest that Set Cover and Max Coverage are related to means selection problems that arise in human problem-solving and in pursuing multiple goals: The relationship between goals and means is expressed as a bipartite graph where edges between means and goals indicate which means can be used to achieve which goals. While these problems are believed to be computationally intractable in general, they become more tractable when the structure of the network resembles a tree.
View Article and Find Full Text PDFBackground: Ecological momentary interventions open up new and exciting possibilities for delivering mental health interventions and conducting research in real-life environments via smartphones. This makes designing psychotherapeutic ecological momentary interventions a promising step toward cost-effective and scalable digital solutions for improving mental health and understanding the effects and mechanisms of psychotherapy.
Objective: The first objective of this study was to formatively assess and improve the usability and efficacy of a gamified mobile app, the InsightApp, for helping people learn some of the metacognitive skills taught in cognitive behavioral therapy, acceptance and commitment therapy, and mindfulness-based interventions.
Scientific discovery concerns finding patterns in data and creating insightful hypotheses that explain these patterns. Traditionally, each step of this process required human ingenuity. But the galloping development of computer chips and advances in artificial intelligence (AI) make it increasingly more feasible to automate some parts of scientific discovery.
View Article and Find Full Text PDFOne of the most unique and impressive feats of the human mind is its ability to discover and continuously refine its own cognitive strategies. Elucidating the underlying learning and adaptation mechanisms is very difficult because changes in cognitive strategies are not directly observable. One important domain in which strategies and mechanisms are studied is planning.
View Article and Find Full Text PDFMaking good decisions requires thinking ahead, but the huge number of actions and outcomes one could consider makes exhaustive planning infeasible for computationally constrained agents, such as humans. How people are nevertheless able to solve novel problems when their actions have long-reaching consequences is thus a long-standing question in cognitive science. To address this question, we propose a model of resource-constrained planning that allows us to derive optimal planning strategies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
SignificanceMany bad decisions and their devastating consequences could be avoided if people used optimal decision strategies. Here, we introduce a principled computational approach to improving human decision making. The basic idea is to give people feedback on how they reach their decisions.
View Article and Find Full Text PDFHighly influential "dual-process" accounts of human cognition postulate the coexistence of a slow accurate system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, we argue that a dual-process architecture might reflect a rational tradeoff between the cognitive flexibility afforded by multiple systems and the time and effort required to choose between them. We investigate what the optimal set and number of cognitive systems would be depending on the structure of the environment.
View Article and Find Full Text PDFGoal-directed behavior is a deeply important part of human psychology. People constantly set goals for themselves and pursue them in many domains of life. In this paper, we develop computational models that characterize how humans pursue goals in a complex dynamic environment and test how well they describe human behavior in an experiment.
View Article and Find Full Text PDFBeyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue their own goals. The extent to which they leverage this capacity varies widely across people and situations. The goal of this article is to propose and evaluate a model of proactivity and reactivity.
View Article and Find Full Text PDFHow do people learn when to allocate how much cognitive control to which task? According to the Learned Value of Control (LVOC) model, people learn to predict the value of alternative control allocations from features of a situation. This suggests that people may generalize the value of control learned in one situation to others with shared features, even when demands for control are different. This makes the intriguing prediction that what a person learned in one setting could cause them to misestimate the need for, and potentially overexert, control in another setting, even if this harms their performance.
View Article and Find Full Text PDFThe commentaries raised questions about normativity, human rationality, cognitive architectures, cognitive constraints, and the scope or resource rational analysis (RRA). We respond to these questions and clarify that RRA is a methodological advance that extends the scope of rational modeling to understanding cognitive processes, why they differ between people, why they change over time, and how they could be improved.
View Article and Find Full Text PDFProcrastination takes a considerable toll on people's lives, the economy and society at large. Procrastination is often a consequence of people's propensity to prioritize their immediate experiences over the long-term consequences of their actions. This suggests that aligning immediate rewards with long-term values could be a promising way to help people make more future-minded decisions and overcome procrastination.
View Article and Find Full Text PDFModeling human cognition is challenging because there are infinitely many mechanisms that can generate any given observation. Some researchers address this by constraining the hypothesis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting rational models with cognitive constraints, incorporating rational principles into cognitive architectures, and applying optimality principles to understanding neural representations.
View Article and Find Full Text PDFThe human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert.
View Article and Find Full Text PDFMany contemporary accounts of human reasoning assume that the mind is equipped with multiple heuristics that could be deployed to perform a given task. This raises the question of how the mind determines when to use which heuristic. To answer this question, we developed a rational model of strategy selection, based on the theory of rational metareasoning developed in the artificial intelligence literature.
View Article and Find Full Text PDFPeople's decisions and judgments are disproportionately swayed by improbable but extreme eventualities, such as terrorism, that come to mind easily. This article explores whether such availability biases can be reconciled with rational information processing by taking into account the fact that decision makers value their time and have limited cognitive resources. Our analysis suggests that to make optimal use of their finite time decision makers should overrepresent the most important potential consequences relative to less important, put potentially more probable, outcomes.
View Article and Find Full Text PDFCognitive biases, such as the anchoring bias, pose a serious challenge to rational accounts of human cognition. We investigate whether rational theories can meet this challenge by taking into account the mind's bounded cognitive resources. We asked what reasoning under uncertainty would look like if people made rational use of their finite time and limited cognitive resources.
View Article and Find Full Text PDFPeople's estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people's rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time.
View Article and Find Full Text PDFIn spite of its familiar phenomenology, the mechanistic basis for mental effort remains poorly understood. Although most researchers agree that mental effort is aversive and stems from limitations in our capacity to exercise cognitive control, it is unclear what gives rise to those limitations and why they result in an experience of control as costly. The presence of these control costs also raises further questions regarding how best to allocate mental effort to minimize those costs and maximize the attendant benefits.
View Article and Find Full Text PDFSignal transducer and activator of transcription 3 (STAT3) is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non-small cell lung carcinoma (NSCLC) cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1) was analyzed and correlated with the STAT3 activity status.
View Article and Find Full Text PDFMarr's levels of analysis-computational, algorithmic, and implementation-have served cognitive science well over the last 30 years. But the recent increase in the popularity of the computational level raises a new challenge: How do we begin to relate models at different levels of analysis? We propose that it is possible to define levels of analysis that lie between the computational and the algorithmic, providing a way to build a bridge between computational- and algorithmic-level models. The key idea is to push the notion of rationality, often used in defining computational-level models, deeper toward the algorithmic level.
View Article and Find Full Text PDF