Publications by authors named "Lieberman P"

Purpose: A first-in-human phase one study was conducted in nasopharyngeal carcinoma (NPC) patients to assess the safety and tolerability of VK-2019, a small molecule selective inhibitor of Epstein-Barr virus Nuclear Antigen 1 (EBNA1).

Patients And Methods: Pharmacokinetic and pharmacodynamic studies, including circulating tumor EBV DNA plasma levels, were performed. Twenty-three patients received VK-2019 orally once daily at doses ranging from 60 to 1800 mg using an accelerated titration design, with cohort expansion at 1800 mg.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a ubiquitous human ɣ-herpesvirus implicated in various malignancies, including Burkitt's lymphoma and gastric carcinomas. In most EBV-associated cancers, the viral genome is maintained as an extrachromosomal episome by the EBV nuclear antigen-1 (EBNA1). EBNA1 is considered to be a highly stable protein that interacts with the ubiquitin-specific protease 7 (USP7).

View Article and Find Full Text PDF

Unlabelled: HIV establishes long-term latent infection in memory CD4 T cells and also establishes sustained long-term productive infection in macrophages, especially in the central nervous system (CNS). To better understand how HIV sustains infection in macrophages, we performed RNAseq analysis after infection of human monocyte-derived macrophages (MDMs) with the brain-derived HIV-1 strain YU2 and compared this with acute infection of CD4 T cells. HIV infection in MDM and CD4 T cells altered many gene transcripts, but with few overlaps between these different cell types.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is an aetiologic risk factor for the development of multiple sclerosis (MS). However, the role of EBV-infected B cells in the immunopathology of MS is not well understood. Here we characterized spontaneous lymphoblastoid cell lines (SLCLs) isolated from MS patients and healthy controls (HC) ex vivo to study EBV and host gene expression in the context of an individual's endogenous EBV.

View Article and Find Full Text PDF

Most Epstein-Barr virus-associated gastric carcinoma (EBVaGC) harbor non-silent mutations that activate phosphoinositide 3 kinase (PI3K) to drive downstream metabolic signaling. To gain insights into PI3K/mTOR pathway dysregulation in this context, we performed a human genome-wide CRISPR/Cas9 screen for hits that synergistically blocked EBVaGC proliferation together with the PI3K antagonist alpelisib. Multiple subunits of carboxy terminal to LisH (CTLH) E3 ligase, including the catalytic MAEA subunit, were among top screen hits.

View Article and Find Full Text PDF

The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology.

View Article and Find Full Text PDF
Article Synopsis
  • Aberrant splicing of the MS4A1 gene results in multiple mRNA isoforms of CD20, with V1 and V3 being the most significant in B-cell malignancies and immune responses.
  • The presence of V3 correlates with higher CD20 protein levels, while V1 is likely translation-deficient due to structural elements that inhibit protein synthesis.
  • Studies show that modulating these isoforms can enhance CD20 expression and improve the effectiveness of anti-CD20 therapies, highlighting a potential link between splicing patterns and immunotherapy resistance.
View Article and Find Full Text PDF
Article Synopsis
  • The gene encoding CD20 in human B cells produces multiple mRNA isoforms, particularly V1 and V3, which play different roles in B-cell malignancies and immunotherapy responses.
  • Increased CD20 positivity during B-cell activation correlates with the shift from V1 to V3, and only V3 is associated with higher CD20 protein levels in diffuse large B-cell lymphoma.
  • Manipulating CD20 isoform expression can enhance the effectiveness of anti-CD20 therapies, revealing that splicing changes may contribute to resistance in immunotherapy, particularly evident in relapsed follicular lymphoma cases.
View Article and Find Full Text PDF

Epstein-Barr virus (EBV) latency is controlled by epigenetic silencing by DNA methylation [5-methyl cytosine (5mC)], histone modifications, and chromatin looping. However, how they dictate the transcriptional program in EBV-associated gastric cancers remains incompletely understood. EBV-associated gastric cancer displays a 5mC hypermethylated phenotype.

View Article and Find Full Text PDF

HIV-infected macrophages are long-lived cells that represent a barrier to functional cure. Additionally, low-level viral expression by central nervous system (CNS) macrophages contributes to neurocognitive deficits that develop despite antiretroviral therapy (ART). We recently identified H3K9me3 as an atypical epigenetic mark associated with chronic HIV infection in macrophages.

View Article and Find Full Text PDF

Background And Objectives: Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that establishes lifelong latency in memory B cells and has been identified as a major risk factor of multiple sclerosis (MS). B cell depletion therapies have disease-modifying benefit in MS. However, it is unclear whether this benefit is partly attributable to the elimination of EBV B cells.

View Article and Find Full Text PDF

PARP1 has been shown to regulate EBV latency. However, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has not yet been explored. Here, we show that PARPi BMN-673 has a potent anti-tumor effect on EBV-driven LCL in a mouse xenograft model.

View Article and Find Full Text PDF
Article Synopsis
  • * EBNA1’s stability and function are influenced by interactions with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) proteins, particularly PLOD1, which supports EBNA1's protein levels and replication activity.
  • * Mutations in lysine residues K460 and K461 of EBNA1 affect its stability and interaction with PLOD1, illustrating how these modifications impact EBNA1’s role in viral replication and maintenance in infected cells.
View Article and Find Full Text PDF

Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance.

View Article and Find Full Text PDF

Kaposi's Sarcoma (KS) is a heterogenous, multifocal vascular malignancy caused by the human herpesvirus 8 (HHV8), also known as Kaposi's Sarcoma-Associated Herpesvirus (KSHV). Here, we show that KS lesions express iNOS/NOS2 broadly throughout KS lesions, with enrichment in LANA positive spindle cells. The iNOS byproduct 3-nitrotyrosine is also enriched in LANA positive tumor cells and colocalizes with a fraction of LANA-nuclear bodies.

View Article and Find Full Text PDF

Telomere length maintenance is essential for cellular immortalization and tumorigenesis. 5% - 10% of human cancers rely on a recombination-based mechanism termed alternative lengthening of telomeres (ALT) to sustain their replicative immortality, yet there are currently no targeted therapies. Through CRISPR/Cas9-based genetic screens in an ALT-immortalized isogenic cellular model, here we identify histone lysine demethylase KDM2A as a molecular vulnerability selectively for cells contingent on ALT-dependent telomere maintenance.

View Article and Find Full Text PDF

Epidemiological studies have demonstrated that Epstein-Barr virus (EBV) is a known etiologic risk factor, and perhaps prerequisite, for the development of MS. EBV establishes life-long latent infection in a subpopulation of memory B cells. Although the role of memory B cells in the pathobiology of MS is well established, studies characterizing EBV-associated mechanisms of B cell inflammation and disease pathogenesis in EBV (+) B cells from MS patients are limited.

View Article and Find Full Text PDF
Article Synopsis
  • - About 15% of human cancers are linked to viral infections, and traditional methods for studying viruses in tumors involve aligning RNA sequencing data to known virus databases.
  • - The researchers developed a new tool called viRNAtrap, which uses a deep learning model to identify and analyze viral RNA sequences without the need for alignment.
  • - By applying viRNAtrap to data from 14 types of cancer, the study revealed unexpected viruses potentially linked to cancer progression and identified human endogenous viruses associated with worse survival outcomes.
View Article and Find Full Text PDF

The ability of Epstein-Barr virus (EBV) to switch between latent and lytic infection is key to its long-term persistence, yet the molecular mechanisms behind this switch remain unclear. To investigate transcriptional events during the latent-to-lytic switch, we utilized Precision nuclear Run On followed by deep Sequencing (PRO-Seq) to map cellular RNA polymerase (Pol) activity to single-nucleotide resolution on the host and EBV genome in three different models of EBV latency and reactivation. In latently infected Mutu-I Burkitt lymphoma (BL) cells, Pol activity was enriched at the Qp promoter, the EBER region, and the BHLF1/LF3 transcripts.

View Article and Find Full Text PDF

EBV persist as multicopy episomes in latently infected cells and alter transcriptional program of host systems. Knowledge of EBV tethering site helps us understand how EBV attaches to and regulates the host chromosome. Here, we introduce a step-by-step protocol for 4C-seq analysis, including cell fixation, 4C-DNA construction, and sequencing library preparation performed with EBV-positive Burkitt's lymphoma cells.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes a lifelong latent infection that can be a causal agent for a diverse spectrum of cancers and autoimmune disease. A complex and dynamic viral lifecycle evades eradication by the host immune system and confounds antiviral therapeutic strategies. To date, there are no clinically approved vaccines or therapies that selectively target EBV as the underlying cause of EBV-associated disease.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1) is a multifunctional viral-encoded DNA-binding protein essential for Epstein-Barr virus (EBV) DNA replication and episome maintenance. EBNA1 binds to two functionally distinct elements at the viral origin of plasmid replication (), termed the dyad symmetry (DS) element, required for replication initiation and the family of repeats (FR) required for episome maintenance. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the EBNA1 DNA binding domain (DBD) from amino acids (aa) 459 to 614 and its interaction with two tandem sites at the DS and FR.

View Article and Find Full Text PDF
Article Synopsis
  • DAXX and ATRX are tumor suppressor proteins that, when mutated, contribute to cancer development through a mechanism known as alternative lengthening of telomeres (ALT).
  • Knock-out of these proteins in U87-T cells leads to defects in p53 chromatin binding and the DNA damage response, indicating issues in how cells manage DNA breaks.
  • Analysis shows a global reduction in p53 binding to DNA and loss of chromatin accessibility, pointing to a critical interaction between histones, chromatin structure, and the tumor suppressor role of p53 in the context of ALT-like cells.
View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate.

View Article and Find Full Text PDF